ABSTRACT:The study describes significant outcomes of the 'Metrology for Meteorology' project, MeteoMet, which is an attempt to bridge the meteorological and metrological communities. The concept of traceability, an idea used in both fields but with a subtle difference in meaning, is at the heart of the project. For meteorology, a traceable measurement is the one that can be traced back to a particular instrument, time and location. From a metrological perspective, traceability further implies that the measurement can be traced back to a primary realization of the quantity being measured in terms of the base units of the International System of Units, the SI. These two perspectives reflect long-standing differences in culture and practice and this project -and this study -represents only the first step towards better communication between the two communities. The 3 year MeteoMet project was funded by the European Metrology Research Program (EMRP) and involved 18 European National Metrological Institutes, 3 universities and 35 collaborating stakeholders including national meteorology organizations, research institutes, universities, associations and instrument companies. The project brought a metrological perspective to several long-standing measurement problems in meteorology and climatology, varying from conventional ground-based measurements to those made in the upper atmosphere. It included development and testing of novel instrumentation as well as improved calibration procedures and facilities, instrument intercomparison under realistic conditions and best practice dissemination. Additionally, the validation of historical temperature data series with respect to measurement uncertainties and a methodology for recalculation of the values were included.
Laser absorption spectroscopy offers the potential for fast and precise trace moisture detection in gases at atmospheric pressure with a small cross sensitivity towards other molecules. We report on the development and calibration of a fibre-coupled tunable diode laser absorption spectrometer operating in the 1 - 100 ppm humidity range. The spectrometer was tested at three European humidity standards laboratories. The performance of the spectrometer was characterized by monitoring constant water vapour concentrations over several hours, yielding a good long-term stability, reproducibility and accuracy. The standard deviations of the measured water vapour concentrations for values above 5 ppm were below ±2%. Comparisons of the instrument with chilled mirror hygrometers demonstrated its fast response time. The dependences of the signal upon the flow rate and temperature are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.