Copper slag (CS) is a derivative of copper production that is mainly composed of heavy metals. The large amount of this material accumulated around the world entails a serious environmental danger. Its use as a replacement of mineral aggregate in asphalt mixtures would allow to increase the durability and resistance, taking advantage of its physical-chemical properties. In this research, physicochemical analyses of different combinations of CS, reclaimed asphalt pavements (RAP), asphalt cement and aggregates by X-Ray Diffraction (XRD) and Fourier-Transform InfraRed spectroscopy (FT-IR) were developed. Subsequently, Marshall stiffness ratio, indirect tensile strength (IDT) and resilient modulus tests were performed to determine their implication in mechanical behaviour. Asphalt mixes with ranges from 45 to 55% of recycled material have improved stability, Marshall Flow and Stiffness ratio, obtaining values comparable with those from a conventional mixture. At the same time, its resilient modulus and IDT values increased by 35% compared to conventional mixes. To maintain values similar to conventional mixes, when the amount of RAP decreases the amount of CS should be increased, with a maximum value of 35%. This behaviour is explained by the presence of fayalite and magnetite in CS, which are hard, dense and hydrophobic components that produce increased elastic deformation of the binder before breaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.