S U M M A R Y Postnatal skeletal muscle fiber type is commonly defined by one of four major myosin heavy chain (MyHC) gene isoforms (slow/I, 2a, 2x, and 2b) that are expressed. We report on the novel use of combined TaqMan quantitative real-time RT-PCR and image analysis of serial porcine muscle sections, subjected to in situ hybridization (ISH) and immunocytochemistry (IHC), to quantify the mRNA expression of each MyHC isoform within its corresponding fiber type, termed relative fiber type-restricted expression. This versatile approach will allow quantitative temporospatial comparisons of each MyHC isoform among muscles from the same or different individuals. Using this approach on porcine skeletal muscles, we found that the relative fiber type-restricted expression of each postnatal MyHC gene showed wide spatial and temporal variation within a given muscle and between muscles. Marked differences were also observed among pig breeds. Notably, of the four postnatal MyHC isoforms, the 2a MyHC gene showed the highest relative fiber typerestricted expression in each muscle examined, regardless of age, breed, or muscle type. This suggests that although 2a fibers are a minor fiber type, they may be disproportionately more important as a determinant of overall muscle function than was previously believed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.