SignificanceThe “centromere paradox” refers to rapidly evolving and highly diverse centromere DNA sequences even in closely related eukaryotes. However, factors contributing to this rapid divergence are largely unknown. Here, we identified large regional, LTR retrotransposon-rich centromeres in a group of human fungal pathogens belonging to the Cryptococcus species complex. We provide evidence that loss-of-functional RNAi machinery and possibly cytosine DNA methylation trigger instability of the genome by activation of centromeric retrotransposons presumably suppressed by RNAi. We propose that RNAi, together with cytosine DNA methylation, serves as a critical determinant that maintains repetitive transposon-rich centromere structures. This study explores the direct link between RNAi and centromere structure evolution.
Patients infected with the fungal pathogen Cryptococcus are most effectively treated with a combination of 5-fluorocytosine (5FC) and amphotericin B. 5FC acts as a prodrug, which is converted into toxic 5-fluorouracil (5FU) upon uptake into fungal cells. However, the pathogen frequently develops resistance through unclear mechanisms. Here we show that resistance to 5FC in Cryptococcus deuterogattii is acquired more frequently in isolates with defects in DNA mismatch repair that confer an elevated mutation rate. We use whole genome sequencing of 16 independent isolates to identify mutations associated with 5FC resistance in vitro. We find mutations in known resistance genes (FUR1 and FCY2) and in a gene UXS1, previously shown to encode an enzyme that converts UDP-glucuronic acid to UDP-xylose for capsule biosynthesis, but not known to play a role in 5FC metabolism. Mutations in UXS1 lead to accumulation of UDP-glucuronic acid and alterations in nucleotide metabolism, which appear to suppress toxicity of both 5FC and its toxic derivative 5FU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.