During hedgehog biosynthesis, autocatalytic processing produces a lipid-modified amino-terminal fragment (residues 24 -197 in the human Sonic hedgehog sequence) that is responsible for all known hedgehog signaling activity and that is highly conserved evolutionarily. Published in vitro biochemical studies using Drosophila hedgehog identified the membrane anchor as a cholesterol, and localized the site of attachment to the COOH terminus of the fragment. We have expressed full-length human Sonic hedgehog in insect and in mammalian cells and determined by mass spectrometry that, in addition to cholesterol, the human hedgehog protein is palmitoylated. Peptide mapping and sequencing data indicate that the palmitoyl group is attached to the NH 2 terminus of the protein on the ␣-amino group of Cys-24. Cell-free palmitoylation studies demonstrate that radioactive palmitic acid is readily incorporated into wild type Sonic hedgehog, but not into variant forms lacking the Cys-24 attachment site. The lipid-tethered forms of hedgehog showed about a 30-fold increase in potency over unmodified soluble hedgehog in a cell-based (C3H10T1/2 alkaline phosphatase induction) assay, suggesting that the lipid tether plays an important role in hedgehog function. The observation that an extracellular protein such as Shh is palmitoylated is highly unusual and further adds to the complex nature of this protein.
Axon regeneration in the adult CNS is prevented by inhibitors in myelin. These inhibitors seem to modulate RhoA activity by binding to a receptor complex comprising a ligand-binding subunit (the Nogo-66 receptor NgR1) and a signal transducing subunit (the neurotrophin receptor p75). However, in reconstituted non-neuronal systems, NgR1 and p75 together are unable to activate RhoA, suggesting that additional components of the receptor may exist. Here we describe LINGO-1, a nervous system-specific transmembrane protein that binds NgR1 and p75 and that is an additional functional component of the NgR1/p75 signaling complex. In non-neuronal cells, coexpression of human NgR1, p75 and LINGO-1 conferred responsiveness to oligodendrocyte myelin glycoprotein, as measured by RhoA activation. A dominant-negative human LINGO-1 construct attenuated myelin inhibition in transfected primary neuronal cultures. This effect on neurons was mimicked using an exogenously added human LINGO-1-Fc fusion protein. Together these observations suggest that LINGO-1 has an important role in CNS biology.
Sonic hedgehog (Shh) is a prototypical morphogen known to regulate epithelial/mesenchymal interactions during embryonic development. We found that the hedgehog-signaling pathway is present in adult cardiovascular tissues and can be activated in vivo. Shh was able to induce robust angiogenesis, characterized by distinct large-diameter vessels. Shh also augmented blood-flow recovery and limb salvage following operatively induced hind-limb ischemia in aged mice. In vitro, Shh had no effect on endothelial-cell migration or proliferation; instead, it induced expression of two families of angiogenic cytokines, including all three vascular endothelial growth factor-1 isoforms and angiopoietins-1 and -2 from interstitial mesenchymal cells. These findings reveal a novel role for Shh as an indirect angiogenic factor regulating expression of multiple angiogenic cytokines and indicate that Shh might have potential therapeutic use for ischemic disorders.
The control of myelination by oligodendrocytes in the CNS is poorly understood. Here we show that LINGO-1 is an important negative regulator of this critical process. LINGO-1 is expressed in oligodendrocytes. Attenuation of its function by dominant-negative LINGO-1, LINGO-1 RNA-mediated interference (RNAi) or soluble human LINGO-1 (LINGO-1-Fc) leads to differentiation and increased myelination competence. Attenuation of LINGO-1 results in downregulation of RhoA activity, which has been implicated in oligodendrocyte differentiation. Conversely, overexpression of LINGO-1 leads to activation of RhoA and inhibition of oligodendrocyte differentiation and myelination. Treatment of oligodendrocyte and neuron cocultures with LINGO-1-Fc resulted in highly developed myelinated axons that have internodes and well-defined nodes of Ranvier. The contribution of LINGO-1 to myelination was verified in vivo through the analysis of LINGO-1 knockout mice. The ability to recapitulate CNS myelination in vitro using LINGO-1 antagonists and the in vivo effects seen in the LINGO-1 knockout indicate that LINGO-1 signaling may be critical for CNS myelination.
The anti-inflammatory action of glucocorticoids has been attributed to the induction of a group of phospholipase A2 inhibitory proteins, collectively called lipocortin. These proteins are thought to control the biosynthesis of the potent mediators of inflammation, prostaglandins and leukotrienes, by inhibiting the release of their common precursor, arachidonic acid, a process that requires phospholipase A2 hydrolysis of phospholipids. Lipocortin-like proteins have been isolated from various cell types, including monocytes, neutrophils and renal medullary cell preparations. The predominant active form is a protein with an apparent relative molecular mass (Mr) of 40,000 (40K). These partially purified preparations of lipocortin mimic the effect of steroids, and mediate anti-inflammatory activity in various in vivo model systems. Using amino-acid sequence information obtained from purified rat lipocortin, we have now cloned human lipocortin complementary DNA and expressed the gene in Escherichia coli. Our studies confirm that lipocortin is a potent inhibitor of phospholipase A2 activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.