Extending recent numerical studies on two dimensional amorphous bodies, we characterize the approach of elastic continuum limit in three dimensional (weakly polydisperse) Lennard-Jones systems. While performing a systematic finite-size analysis (for two different quench protocols) we investigate the non-affine displacement field under external strain, the linear response to an external delta force and the low-frequency harmonic eigenmodes and their density distribution. Qualitatively similar behavior is found as in two dimensions. We demonstrate that the classical elasticity description breaks down below an intermediate length scale ξ, which in our system is approximately 23 molecular sizes. This length characterizes the correlations of the non-affine displacement field, the self-averaging of external noise with distance from the source and gives the lower wave length bound for the applicability of the classical eigenfrequency calculations. We trace back the "Bosonpeak" of the density of eigenfrequencies (obtained from the velocity auto-correlation function) to the inhomogeneities on wave lengths smaller than ξ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.