Within the genus Cryptosporidium 2 lineages have evolved, one adapted to the acid environment of the stomach and abomasum, the other comprising parasites that multiply in the small intestine. We tested whether the release of sporozoites from oocysts, a process known as excystation, is triggered by conditions which mimic the site of infection. Specifically, we exposed oocysts from gastric and intestinal Cryptosporidium species to acid conditions or to a neutral solution of taurocholic acid, at 37 degrees C. We found that oocysts from the gastric species C. muris and C. andersoni excysted in both conditions, whereas the intestinal species C. parvum and C. hominis did not respond to acid. When the effect of temperature alone was tested on C. muris and C. parvum, only oocysts from the former species excysted in significant numbers. Oocysts from intestinal species did not respond to temperature alone, nor to acidity. These observations are consistent with the need of gastric species to rapidly excyst and release the sporozoites upon ingestion, and indicate that Cryptosporidium oocysts have evolved to maximize delivery of sporozoites to the region of the gastro-intestinal tract where the parasite multiplies.
Immunofluorescence-based assays have been developed to detect and quantitate Cryptosporidium parvum infection in cell culture. Here, we describe a method that tracks and quantifies the early phase of attachment and invasion of C. parvum sporozoites using a fluorescent dye. Newly excysted sporozoites were labeled with the amine-reactive fluorescein probe carboxyfluorescein diacetate succinimidyl esters (CFSE) using an optimized protocol. The initial invasion of cells by labeled parasites was detected with fluorescent or confocal microscopy. The infection of cells was quantified by flow cytometry. Comparative analysis of infection of cells with CFSE-labeled and unlabeled sporozoites showed that the infectivity of C. parvum was not affected by CFSE labeling. Quantitative analysis showed that C. parvum Iowa and MD isolates were considerably more invasive than Cryptosporidium hominis isolate TU502. Unlike immunofluorescent assays, CFSE labeling permitted the tracking of the initial invasion of C. parvum. Such an assay may be useful for studying the dynamics of host cell-parasite interaction and possibly for drug screening.
In spite of its limitations, the culture of Cryptosporidium parvum in monolayers of epithelial cells is a suitable model to study the interaction of this protozoan parasite with the host cell, to assay oocyst infectivity, and to screen drugs for anti-cryptosporidial activity. For unknown reasons, growth of Cryptosporidium in culture is limited in time and generally does not lead to the production of significant numbers of oocysts. In monolayers infected with high doses of oocysts, we observed that many cells remain uninfected, suggesting that some cells are less susceptible to the infection. Since C. parvum and the related species C. hominis lack many essential biosynthetic pathways, we tested whether the dependence of the parasite on host cell metabolites may favour the infection of cells in mitosis. The proportion of monolayer cells in stationary (G0/G1) phase and in mitosis (S/G2/M) was determined and the prevalence of infected cells in each subpopulation was quantified. Although C. parvum infects and develops in dividing and stationary cells, a significant preference for cells in S/G2/M phase was observed. Consistent with previous observations showing that C. parvum induces apoptosis in cell monolayers, infection was accompanied by a significant increase in the proportion of mitotic cells.
Although HTLV-I infection has been associated with immunosuppression in symptomatic patients, no controlled study has been done in asymptomatic carriers. We evaluated delayed-type hypersensitivity (DTH) to seven antigens by multitest cell-mediated immunity (CMI) in 40 Colombian Indians, 10 HTLV-I-seropositive asymptomatic patients, and 30 matched controls. Multitest CMI was placed in the forearm and was read 48 hours later by the same physician. A positive reaction was defined as > or =2 mm. Hypoergic response was defined as <2 of 7 positive reactions per case or control. We found that HTLV-I-seropositive people had fewer positive reactions than matched controls (50% versus 64%, respectively; p < .04) but no significant difference was found in these populations in the evaluation of hypoergic responses. This study suggests the presence in asymptomatic HTLV-I-positive Colombian Indians of a marginal alteration of cell-mediated immunity that cannot be classified as hypoergic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.