Hydrous CaMg-carbonate was synthesized at temperatures of 40°, 60°and 80°C in the laboratory. This material has very similar mineralogical characteristics to natural disordered dolomite from the Coorong region in South Australia. Besides the dolomite variable amounts of amorphous carbonate are present in all samples. The oxygen isotope compositions of synthesized bulk carbonate samples (e.g., amorphous carbonate plus dolomite) plot significantly lower than the Northrop and Clayton (1966) dolomite-water equilibrium. Fractionated degassing of the samples, however, revealed relatively low oxygen isotope values for fastreacting (using 100% H 3 PO 4 ) amorphous carbonate. In contrast, slow-reacting dolomite has more positive oxygen isotope values, and calculated carbonate-water oxygen isotope fractionation values are close to strongest known dolomite-water oxygen isotope fractionation published earlier on. Variations of reaction/ stabilization temperatures during synthesis gave evidence for dolomite formation from hypersaline solutions by a dissolution/reprecipitation process. It is likely that amorphous carbonate has been a problem in defining the dolomite-water fractionation in the past. Moreover, dolomite-associated amorphous carbonate contents probably led to incorrect speculations about lower oxygen isotope fractionation in a so-called protodolomitewater system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.