In this study, the authors prepared a series of technologically significant Fe1 -xAlx (0.2 ≤ x ≤ 0.6) alloys by two distinct methods: (a) arc melting and (b) ball milling and compared their structural and magnetic characteristics using XRD and VSM. Regardless of the synthesis method, structural analyses show that a FeAl alloy phase forms in both situations. Although FeAl alloy is formed using both processes, the diffraction patterns are indeed very different. In samples prepared by ball milling, the peaks are substantially wider than in samples obtained by arc melting. This is mostly due to the development of nanostructured disordered FeAl alloy during ball milling of the material. Aside from this, the existence of an Aluminum peak in a sample obtained by arc melting shows an unequal distribution of Al into the Iron matrix, whereas in a sample prepared by ball milling, Al is completely dissolved into the Fe lattice. Magnetic data indicate that the arc melted process favors the nonmagnetic FeAl alloy phase, whereas the ball milled method favors the weakly magnetic FeAl alloy phase. The existence of weak magnetism in a ball-milled sample is explained by considering the system's degree of nanocrystallization and disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.