We apply the diabatic formalism, first introduced in molecular physics, to the description of heavy-quark mesons. In this formalism the dynamics is completely described by a diabatic potential matrix whose elements can be derived from unquenched lattice QCD studies of string breaking. For energies far below the lowest open flavor meson-meson threshold, the resulting diabatic approach reduces to the well-known Born-Oppenheimer approximation where heavy-quark meson masses correspond to energy levels in an effective quark-antiquark potential. For energies close below or above that threshold, where the Born-Oppenheimer approximation fails, this approach provides a set of coupled Schrödinger equations incorporating meson-meson components nonperturbatively, i.e., beyond loop corrections. A spectral study of heavy mesons containing cc with masses below 4.1 GeV is carried out within this framework. From it a unified description of conventional as well as unconventional resonances comes out.
We revisit the nonrelativistic quark model description of electromagnetic radiative decays in bottomonium. We show that even for the simplest spectroscopic quark model the calculated widths can be in good agreement with data once the experimental masses of bottomonium states and the photon energy are properly implemented in the calculation. For transitions involving the lower lying spectral states this implementation can be easily done via the Long Wave Length approximation. For transitions where this approximation does not apply we develop a new method of implementing the experimental energy dependencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.