Purpose -The purpose of this paper is to develop comprehensive risk management tool, Intelligent Risk Mapping and Assessment System (IRMASe) with a contingency for multi-site, multi-partner concurrent engineering projects with the aim of achieving above-mentioned paradigms. Its unique knowledge warehouse enables the use of organisational knowledge, lessons learnt, captured as well as best practices to minimise risks in project management. Design/methodology/approach -IRMAS is designed to identify, prioritise, analyse and assist project managers to manage perceived sources of concurrent engineering risks. Several knowledge elicitation techniques were used to compile the knowledge used for the intelligent system developed. The core of the research is the reasoning methodology that not only supports the decision-making process of the user, but also aids the knowledge retrieving, storing, sharing and updating process of manufacturing organisations.
One factor affecting the quality of tea is the selection of plant material that would be planted on the field. Clonal selection is a common way to produce tea with better quality. However, as a natural cross pollination species, tea often consists of various clones or progenies of cross-pollinated process. This commonly occurs on plantations owned by smallholder farmers. To produce a consistent quality tea, the clones or progenies need to be identified. Usually, human experts distinguish the plants from leaves by visual inspection on the physical attributes of the leaves, such as the textures, the bone structures, and the colors. It is very difficult for non-experts or common farmers to do such identifications. In this, we propose a deep learning-based identification of tea clones. We apply deep convolutional neural network (CNN) to identify 3 types of tea clones of Gambung series, a series of tea clones developed at Research Institute of Tea and Cinchona. Our study indicates that the performance of the CNN systems are affected by the depth of the convolutional layers. VGGNet, a popular CNN architectures with 16 layers, achieves better accuracy compared to AlexNet, a CNN with 6 layers.
In this paper, we propose a novel deep learning-based feature learning architecture for object classification. Conventionally, deep learning methods are trained with supervised learning for object classification. But, this would require large amount of training data. Currently there are increasing trends to employ unsupervised learning for deep learning. By doing so, dependency on the availability of large training data could be reduced. One implementation of unsupervised deep learning is for feature learning where the network is designed to “learn” features automatically from data to obtain good representation that then could be used for classification. Autoencoder and generative adversarial networks (GAN) are examples of unsupervised deep learning methods. For GAN however, the trajectories of feature learning may go to unpredicted directions due to random initialization, making it unsuitable for feature learning. To overcome this, a hybrid of encoder and deep convolutional generative adversarial network (DCGAN) architectures, a variant of GAN, are proposed. Encoder is put on top of the Generator networks of GAN to avoid random initialisation. We called our method as EGAN. The output of EGAN is used as features for two deep convolutional neural networks (DCNNs): AlexNet and DenseNet. We evaluate the proposed methods on three types of dataset and the results indicate that better performances are achieved by our proposed method compared to using autoencoder and GAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.