Highly peaked density and pressure profiles in a new operating regime have been observed on the Tokamak Fusion Test Reactor (TFTR). The qprofile has a region of reversed magnetic shear extending from the magnetic axis to r / u-0.3-0.4. The central electron density rises from 0.45 x lo2' m-3 to nearly 1.2 x lo2' m-' during neutral beam injection. The electron particle diffusivity drops precipitously in the plasma core with the onset of the improved confinement mode and can be reduced by a factor of N 50 to near the neoclassical particle diffusivity level.
A simulation of an anticipated TFTR DT supershot is described. The simulation is based on a reproducible, high performance, long duration DD supershot with a major radius of 2.45m. The TRANSP plasma analysis code is used to model fast ion (D, T, and alpha) parameters, including their distributions in energy and pitch angle. Values and fits are provided for comparing plasma modeling codes and for use in codes for analyzing MHD stability and collective alpha particle effects.
In this paper a laboratory investigation is made on magnetic reconnection in high-temperature Tokamak Fusion Test Reactor (TFTR) plasmas [Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 51]. The motional Stark effect (MSE) diagnostic is employed to measure the pitch angle profile of magnetic field lines, and hence the q profile. An analytical expression that relates pitch angle to q profile is presented for a toroidal plasma with circular cross section. During the crash phase of sawtooth oscillations in plasma discharges, the ECE (electron cyclotron emission) diagnostic measures a fast flattening of the two-dimensional (2-D) electron temperature profile in a poloidal plane, an observation consistent with the Kadomtsev reconnection theory. On the other hand, the MSE measurements indicate that central q values do not relax to unity after the crash, but increase only by 5%–15%, typically from 0.7 to 0.8. The latter result is in contradiction with the 2-D models of Kadomtsev and/or Wesson. In the present study this puzzle is addressed by a simultaneous analysis of electron temperature and q profile evolutions. Based on a heuristic model for magnetic reconnection during the sawtooth crash, the small change of q, i.e., partial reconnection, is attributed to the precipitous drop of pressure gradients that drive the instability and the reconnection process, as well as flux conserving plasma dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.