Since the first occurrence of Halyomorpha halys (Heteroptera: Pentatomidae) in Italy in 2012, the pest has spread in the Po Valley causing severe damage in summer 2015, particularly in pear orchards. At present, populations of H. halys have been reported in the regions of Emilia‐Romagna (Modena, Reggio Emilia and Bologna provinces), Piedmont, Lombardy, Veneto and Friuli. The damage caused by H. halys is typical of pentatomids and is aggravated by the pest's polyphagy and by the behaviour of adults which move continuously from plant to plant, from hedges or herbaceous crops to fruit orchards. The unpredictability of H. halys’ movements, along with the effect of the aggregating pheromone that concentrates the pest in certain areas of the orchards, therefore making chemical spraying complicated.
A new dynamic model for Erysiphe necator ascosporic infections on grapevine was developed. Between budbreak of vines and the time when the pool of ascospores is depleted, the model uses weather data for calculating, at daily intervals: curve of ascospore maturation; ascospore discharge events and relative proportion of the discharged ascospores; infection periods and their relative infection severity; and progress of latency period and time when secondary infections should begin. The model was validated over a 4-year period (2005)(2006)(2007)(2008) in 26 vineyards in Italy by comparing model predictions with actual observations of the first seasonal symptoms of powdery mildew. The model showed high sensitivity, specificity and accuracy. Proportions of true and false positive predictions were TPP = 0AE94 and FPP = 0AE26, respectively. Because a proportion of predicted infection periods did not result in actual disease onset, confidence was higher for prediction of non-infections than for prediction of infections. Most of the false positive predictions occurred in the earlier growth stages of the host, when the surface area of susceptible tissue may be very small so that the probability that ejected ascospores land on susceptible tissue is low. An equation was then developed to describe the probability that a predicted infection period results in disease onset as a function of the growth stage of vines at the time of prediction. The new model should improve early season powdery mildew management by helping vineyard managers schedule fungicide sprays or schedule the scouting of the vineyard for detection of first disease signs.
Culture filtrates of a pathogenic isolate (IT37) of Stemphylium vesicarium, causing brown spot of European pear, induced veinal necrosis only on pear leaves susceptible to the pathogen. Two host-specific toxins, SV-toxins I and II, were purified from culture filtrates of IT37 by successively using Amberlite XAD-2 resin adsorption, cellulose thin-layer chromatography, and high-performance liquid chromatography under three different sets of conditions. Susceptible cultivars showed veinal necrosis at a SV-toxin I concentration of 0.01 to 0.1 mug/ml, whereas resistant cultivars were insensitive to the toxin at 1,000 mug/ml. SV-toxins I and II caused a dose-dependent increase in electrolyte loss from susceptible leaf tissues. No increase in electrolyte loss was detected in leaf tissues from resistant cultivars. The results of physiological studies indicated that SV-toxins appear to have an early effect on plasma membranes of susceptible leaves. Spores of a nonpathogenic isolate induced necrotic lesions on susceptible leaves in the presence of a small amount of toxin. SV-toxins were detected in intercellular fluids obtained from diseased leaves after inoculation with the pathogen. The results indicate that SV-toxins I and II produced by S. vesicarium can be characterized as host-specific toxins.
The effects of environmental conditions on the variability in germination dynamics of Plasmopara viticola oospores were studied from 1999 to 2003. The germination course was determined indirectly as the relative infection incidence (RII) occurring on grape leaf discs kept in contact with oospores sampled from a vineyard between March and July. The time elapsed between 1 January and the infection occurrence was expressed as physiological time, using four methods: (i) sums of daily temperatures > 8 ° C; (ii) hourly temperatures > 10 ° C; (iii) sums of hourly rates from a temperature-dependent function; or (iv) sums of these rates in hours with a rain or vapour pressure deficit ≤ 4·5 hPa (hydro-thermal time, HT). An equation of Gompertz in the form RII = exp[ − a · exp( − b · HT)] produced an accurate fit for both separate years ( R 2 = 0·97 to 0·99) and pooled data ( R 2 = 0·89), as well as a good accuracy in cross-estimating new data ( r between observed and cross-estimated data were between 0·93 and 0·99, P < 0·0001). It also accounted for a great part of the variability in oospore germination between years and both between and within sampling periods. Therefore, the equation of Gompertz (with a = 15·9 ± 2·63 and b = 0·653 ± 0·034) calculated over hydro-thermal time, a physiological time accounting for the effects of both temperature and moisture, produced a consistent modelling of the general relationships between the germination dynamics of a population of P. viticola oospores and weather conditions. It represents the relative density of the seasonal oospores that should have produced sporangia when they have experienced favourable conditions for germination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.