Natural copper patina is usually formed over several decades. This work investigates the possibility of obtaining a stable artificial patina based on brochantite in a more reasonable time. The patination process was based on patina formation from a humid atmosphere containing sulphur dioxide. The studied parameters were humidity (condensation and condensation/drying), sulphur dioxide concentration (4.4–44.3 g·m−3) and surface pre-treatments (grinding, pre-oxidation and pre-patination) prior to the patination process. Samples were evaluated by mass change, digital image analysis, spectrophotometry, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). A resistometric method was employed in order to observe the patina formation continuously during the exposure. Conditions inside the chamber were monitored during the exposure (pH of water and concentration of SO2 in gaseous phase). According to XRD, it was possible to deliberately grow a brochantite patina of reasonable thickness (approx. 30 µm), even within a couple of days of exposure. The drying phase of the condensation cycle increased the homogeneity of the deposited patina. Formation kinetics were the fastest under a condensation/drying cycle, starting with 17.7 g·m−3 sulphur dioxide and decreasing dosing in the cycle, with an electrolyte pH close to 3. The higher sulphur dioxide content above 17.7 g·m−3 forms too aggressive a surface electrolyte, which led to the dissolution of the brochantite. The pre-oxidation of copper surface resulted in a significant improvement of patina homogeneity on the surface.
Exposure of copper in corrosive environment is possible way, how to obtain artificial patina. Various solutions based on chloride, ammonia or polysulfide are commonly use in this purpose. Furthermore, it appears that the patina is also formed in an environment with an increased concentration of SO2 in the atmosphere. This procedure was tested in a small (30 l) exposure chamber, where the aggressiveness of the environment was monitored and where the effect of alternating the condensation and drying phases was shown to be positive. Based on this experiment, a 2 m3 pilot chamber was designed for which a water film sensor was developed and tested to ensure drying of the object surface. Monitoring of the aggressiveness of the environment showed that the pH and SO2 concentrations in the atmosphere are stable after approximately 5 hours and the ideal input SO2 concentration is 17.7 g m-3 at which the pH stabilizes at 2.7-3. By recording the voltage variation on the sensor, it was possible to monitor the formation and drying of the water film during the cycling of the condensation and drying phases.
A typical green layer of patina starts to cover copper in atmosphere condition, which is aesthetically acceptable and also provides protective properties. This work investigates stability of the artificial patina layer based on sulphates prepared from a gaseous phase during two-year exposure in atmosphere condition. XRD and SEM were employed to verify the composition and morphology of artificial patina. Colour and patina coverage were compared before and after exposure also. According to results after 1 and 2 years of exposure, it is possible to see changing of hydroxyl sulphates to more stable brochantite and filling pores in the patina layer. There is almost no colour change, however lower patina coverage is slightly evident due to precipitation and abrasive effect.
Formation of natural patina on copper and copper alloys objects takes tens of years. There are solutions for patination, which are used in restorers’ practice. However, these artificial patinas are usually based on nitrates, carbonates or chlorides. Patina based on brochantite is the most stable phase under atmospheric conditions. This type of patina was successfully formed in laboratory in a small exposure chamber with higher content of SO2. This work is next step of the experiment to make this method become more practicable. It started with construction 2 m3 exposure chamber and simulation of ideal conditions for patination process. The length of drying phase, homogeneity of conditions, pH of feeding water, colour of patina, placement of samples and final appearance were observed. The chamber construction allows to achieve ideal pH value of feeding water, samples surface became dry during the ventilation and temperature during condensation was stable at 40 °C. These conditions are ideal for patination process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.