Abstract.A method for the determination of the stable carbon isotopic composition of atmospheric nitrophenols in the gas and particulate phases is presented. It has been proposed to use the combination of concentration and isotope ratio measurements of precursor and product to test the applicability of results of laboratory studies to the atmosphere. Nitrophenols are suspected to be secondary products formed specifically from the photooxidation of volatile organic compounds. XAD-4 TM resin was used as an adsorbent on quartz filters to sample ambient phenols using conventional high volume air samplers at York University in Toronto, Canada. Filters were extracted in acetonitrile, with a HPLC (high-performance liquid chromatography) clean-up step and a solid phase extraction step prior to derivatization with BSTFA (bis(trimethylsilyl) trifluoroacetamide). Concentration measurements were done with gas chromatographymass spectrometry and gas chromatography-isotope ratio mass spectrometry was used for isotope ratio analysis.The technique presented allows for atmospheric compound-specific isotopic composition measurements for five semi-volatile phenols with an estimated accuracy of 0.3-0.5 ‰ at atmospheric concentrations exceeding 0.1 ng m −3 while the detection limits for concentration measurements are in the pg m −3 range. Isotopic fractionation throughout the entire extraction procedure and analysis was proven to be below the precision of the isotope ratio measurements. The method was tested by conducting ambient measurements from September to December 2011.
A method for the determination of the stable carbon isotopic composition of atmospheric nitrophenols in the gas and particulate phases is presented. It has been proposed to use the combination of concentration and isotope ratio measurements of precursor and product to test the applicability of results of laboratory studies to the atmosphere. Nitrophenols are suspected to be secondary products formed specifically from the photooxidation of volatile organic compounds. XAD-4™ resin was used as an adsorbent on quartz filters to sample ambient phenols using conventional high-volume air samplers at York University in Toronto, Canada. Filters were extracted in acetonitrile, with a HPLC clean-up step and a solid phase extraction step prior to derivatization with BSTFA. Concentration measurements were done with gas chromatography-mass spectrometry and gas chromatography-isotope ratio mass spectrometry was used for isotope ratio analysis.
The technique presented allows for atmospheric compound-specific isotopic composition measurements for five semi-volatile phenols with an estimated accuracy of 0.3‰ to 0.5‰ at atmospheric concentrations exceeding 0.1 ng m−3 while the detection limits for concentration measurements are in the pg m−3 range. Isotopic fractionation throughout the entire extraction procedure and analysis was proven to be below the precision of the isotope ratio measurements. The method was tested by conducting ambient measurements from September to December 2011
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.