Metal-on-metal (MoM) bearings are at the forefront in hip resurfacing arthroplasty. Because of their good wear characteristics and design flexibility, MoM bearings are gaining wider acceptance with market share reaching nearly 10% worldwide. However, concerns remain regarding potential detrimental effects of metal particulates and ion release. Growing evidence is emerging that the local cell response is related to the amount of debris generated by these bearing couples. Thus, an urgent clinical need exists to delineate the mechanisms of debris generation to further reduce wear and its adverse effects. In this study, we investigated the microstructural and chemical composition of the tribochemical reaction layers forming at the contacting surfaces of metallic bearings during sliding motion. Using X-ray photoelectron spectroscopy and transmission electron microscopy with coupled energy dispersive X-ray and electron energy loss spectroscopy, we found that the tribolayers are nanocrystalline in structure, and that they incorporate organic material stemming from the synovial fluid. This process, which has been termed ''mechanical mixing,'' changes the bearing surface of the uppermost 50 to 200 nm from pure metallic to an organic composite material. It hinders direct metal contact (thus preventing adhesion) and limits wear. This novel finding of a mechanically mixed zone of nanocrystalline metal and organic constituents provides the basis for understanding particle release and may help in identifying new strategies to reduce MoM wear. ß
To control and minimize wear of metal-on-metal hip joints it is essential to understand the mechanisms of debris generation. In vivo, mainly nanosize globular and needle-shaped particles are found. These can neither stem from the action of abrasion nor from tribochemical reactions. In this study the acting wear mechanisms have been first identified on the surface by means of scanning electron microscopy (SEM). Afterwards, the microstructures of the subsurface regions of explants have been investigated using a transmission electron microscope (TEM). Observation of the subsurface gave additional insight about the microstructural changes of cobalt-base alloys subjected to wear. At some distance from the surface, a network of stacking faults and hexagonal ⑀-martensite was found strengthening the bulk material. This microstructure changed into a nanocrystalline type moving closer towards the surface. A comparison of in vivo debris size and grain size of the surface suggests that the globular wear particles result from torn off nanocrystals, while the needle shaped particles are generated by fractured ⑀-martensite. Identified cracks, propagating through the nanocrystalline layer, further support these findings. Thus, it is suggested that the dominating mechanism of particle generation for metal-on-metal joints is surface fatigue within a nanocrystalline surface layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.