The hybrid cyclone-nor'easter 3 known as Hurricane Sandy affected the mid-Atlantic and northeastern United States during October 28-30, 2012, causing extensive coastal flooding. Prior to storm landfall, the U.S. Geological Survey (USGS) deployed a temporary monitoring network from Virginia to Maine to record the storm tide and coastal flooding generated by Hurricane Sandy. This sensor network augmented USGS and National Oceanic and Atmospheric Administration (NOAA) networks of permanent monitoring sites that also documented storm surge. Continuous data from these networks were supplemented by an extensive post-storm high-watermark (HWM) flagging and surveying campaign. The sensor deployment and HWM campaign were conducted under a directed mission assignment by the Federal Emergency Management Agency (FEMA). The need for hydrologic interpretation of monitoring data to assist in flood-damage analysis and future flood mitigation prompted the current analysis of Hurricane Sandy by the USGS under this FEMA mission assignment. The analysis of storm-tide impacts focused on three distinct but related aspects of coastal flooding from Hurricane Sandy, including flooding inland along the tidal reach of the Hudson River. These aspects are (1) comparisons of peak storm-tide elevations to those of historical storms and to annual exceedance probabilities, (2) assessments of storm-surge characteristics, and (3) comparisons of maps of inundation extent that were derived from differing amounts of available storm-tide data. Most peak storm-tide elevations from Hurricane Sandy were greater than about 9.5 feet (ft) above North American Vertical Datum of 1988. Peak storm-tide elevations from Hurricane Sandy were compared with data for the intense nor'easter of December 11-13, 1992, and Hurricane Irene (August 27-28, 2011), which weakened to a tropical storm before arriving in New York. Peak storm-tide elevations from Hurricane Sandy were higher than those from the December 1992 nor'easter at 24 of 27 sites; most differences were greater than about 0.7 ft or 9 percent (above the historical storm tide). Peak storm-tide elevations from Hurricane Sandy were higher than those from Tropical Storm Irene at all sites; most differences were greater than about 2.5 ft or 48 percent. Data from permanent and temporary monitoring sites and HWM sites were compared with corresponding FEMA flood elevations for the 10-, 2-, 1-, and 0.2-percent annual exceedance probabilities in New York. Peak storm-tide elevations from Hurricane Sandy had annual exceedance probabilities less than or equal to 1 percent and (or) greater than 0.2 percent at a plurality of sites-184 of 413. Peak storm-tide elevations greater than or equal to the 0.2-percent flood elevation accounted for 81 of 413 sites. Peak storm-tide elevations less than the 10-percent flood elevation accounted for only 10 of 413 sites. Data from selected permanent monitoring sites in the USGS and NOAA networks were used to assess storm-surge magnitude associated with the peak storm tide, and magnitude a...
For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment-visit http://www.usgs.gov or call 1-888-ASK-USGS (1-888-275-8747)For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprodTo order this and other USGS information products, visit
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.