Premise Black Sigatoka is one of the most severe banana (Musa spp.) diseases worldwide, but no methods for the rapid early detection of this disease have been reported. This paper assesses the use of hyperspectral images for the development of a partial‐least‐squares penalized‐logistic‐regression (PLS–PLR) model and a hyperspectral biplot (HS biplot) as a visual tool for detecting the early stages of black Sigatoka disease. Methods Young (three‐month‐old) banana plants were inoculated with a conidia suspension of the black Sigatoka fungus (Pseudocercospora fijiensis). Selected infected and control plants were evaluated using a hyperspectral imaging system at wavelengths in the range of 386–1019 nm. PLS–PLR models were run on the hyperspectral data set. The prediction power was assessed using leave‐one‐out cross‐validation as well as external validation. Results The PLS–PLR model was able to predict the presence of the disease with a 98% accuracy. The wavelengths with the highest contribution to the classification ranged from 577 to 651 nm and from 700 to 1019 nm. Discussion PLS–PLR and HS biplot effectively estimated the presence of black Sigatoka disease at the early stages and can be used to graphically represent the relationship between groups of leaves and both visible and near‐infrared wavelengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.