It has been hypothesized that oxidative imbalance and alterations in nitrergic signaling play a role in the neurobiology of schizophrenia. Preliminary evidence suggests that adjunctive minocycline treatment is efficacious for cognitive and negative symptoms of schizophrenia. This study investigated the effects of minocycline in the prevention and reversal of ketamine-induced schizophrenia-like behaviors in mice. In the reversal protocol, animals received ketamine (20 mg/kg per day intraperitoneally or saline for 14 days, and minocycline (25 or 50 mg/kg daily), risperidone or vehicle treatment from days 8 to 14. In the prevention protocol, mice were pretreated with minocycline, risperidone or vehicle prior to ketamine. Behaviors related to positive (locomotor activity and prepulse inhibition of startle), negative (social interaction) and cognitive (Y maze) symptoms of schizophrenia were also assessed. Glutathione (GSH), thiobarbituric acid-reactive substances (TBARS) and nitrite levels were measured in the prefrontal cortex, hippocampus and striatum. Minocycline and risperidone prevented and reversed ketamine-induced alterations in behavioral paradigms, oxidative markers (i.e. ketamine-induced decrease and increase in GSH levels and TBARS content, respectively) as well as nitrite levels in the striatum. These data provide a rationale for evaluating minocycline as a novel psychotropic agent and suggest that its mechanism of action includes antioxidant and nitrergic systems.
Early-life challenges, particularly infections and stress, are related to neuropsychiatric disorders such as autism and schizophrenia. Here, we conducted a wide range of behavioral tests in periadolescent (postnatal day (PN) 35) and adult (PN70) Swiss mice neonatally challenged with LPS on PN5 and -7, to unveil behavioral alterations triggered by LPS exposure. Immune and neurotrophic (brain-derived neurotrophic factor-BDNF) alterations were determined in the prefrontal cortex (PFC), hippocampus (HC), and hypothalamus (HT). Since the incidence and clinical manifestations of neurodevelopmental disorders present significant sex-related differences, we sought to distinctly evaluate male and female mice. While on PN35, LPS-challenged male mice presented depressive, anxiety-like, repetitive behavior, and working memory deficits; on PN70, only depressive- and anxiety-like behaviors were observed. Conversely, females presented prepulse inhibition (PPI) deficits in both ages studied. Behavioral changes in periadolescence and adulthood were accompanied, in both sexes, by increased levels of interleukin (IL-4) (PFC, HC, and HT) and decreased levels of IL-6 (PFC, HC, and HT). BDNF levels increased in both sexes on PN70. LPS-challenged male mice presented, in both ages evaluated, increased HC myeloperoxidase activity (MPO); while when adult increased levels of interferon gamma (IFNγ), nitrite and decreased parvalbumin were observed. Alterations in innate immunity and parvalbumin were the main LPS-induced remarks between males and females in our study. We concluded that neonatal LPS challenge triggers sex-specific behavioral and neurochemical alterations that resemble autism spectrum disorder, constituting in a relevant model for the mechanistic investigation of sex bias associated with the development of this disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.