In this work, we study the stability of hypothetical satellites of extrasolar planets. Through numerical simulations of the restricted elliptic three-body problem we found the borders of the stable regions around the secondary body. From the empirical results, we derived analytical expressions of the critical semimajor axis beyond which the satellites would not remain stable. The expressions are given as a function of the eccentricities of the planet, e P , and of the satellite, e sat . In the case of prograde satellites, the critical semimajor axis, in the units of Hill's radius, is given by a E ≈ 0.4895 (1.0000 − 1.0305e P − 0.2738e sat ). In the case of retrograde satellites, it is given by a E ≈ 0.9309 (1.0000 − 1.0764e P − 0.9812e sat ). We also computed the satellite stability region (a E ) for a set of extrasolar planets. The results indicate that extrasolar planets in the habitable zone could harbour the Earth-like satellites.
It has been shown that large families are not limited to what found by hierarchical clustering methods (HCM) in the domain of proper elements (a,e,sin(i)), that seems to be biased to find compact, relatively young clusters, but that there exists an extended population of objects with similar taxonomy and geometric albedo, that can extend to much larger regions in proper elements and frequencies domains: the family "halo". Numerical simulations can be used to provide estimates of the age of the family halo, that can then be compared with ages of the family obtained with other methods. Determining a good estimate of the possible orbital extension of a family halo is therefore quite important, if one is interested in determining its age and, possibly, the original ejection velocity field. Previous works have identified families halos by an analysis in proper elements domains, or by using Sloan Digital Sky Survey-Moving Object Catalog data, fourth release (SDSS-MOC4) multi-band photometry to infer the asteroid taxonomy, or by a combination of the two methods. The limited number of asteroids for which geometric albedo was known until recently discouraged in the past the extensive use of this additional parameter, which is however of great importance in identifying an asteroid taxonomy. The new availability of geometric albedo data from the Wide-field Infrared Survey Explorer (WISE) mission for about 100,000 asteroids significantly increased the sample of objects for which such information, with some errors, is now known.In this work we proposed a new method to identify families halos in a multi-domain space composed by proper elements, SDSS-MOC4 (a * , i − z) colors, and WISE geometric albedo for the whole main belt (and the Hungaria and Cybele orbital regions). Assuming that most families were created by the breakup of an undifferentiated parent body, they are expected to be homogeneous in colors and albedo. The new method is quite effective in determining objects belonging to a family halo, with low percentages of likely interlopers, and results that are quite consistent in term of taxonomy and geometric albedo of the halo members.
This work presents a semi-analytical and numerical study of the perturbation caused in a spacecraft by a third-body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second order. The important reason for this procedure is to eliminate terms due to the short periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long-time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. An analysis of the stability of near-circular orbits is made, and a study to know under which conditions this orbit remains near circular completes this analysis. A study of the equatorial orbits is also performed.
Context. Close encounters with massive asteroids are known to be a mechanism of dynamical mobility that can significantly alter proper elements of minor bodies, and they are the main source of dynamical mobility for medium-sized and large asteroids (D > 20 km, approximately). Aims. Orbital mobility caused by close encounters with (4) Vesta has been studied in the past and could be a viable mechanism to produce the current orbital location of some of the V-type asteroids currently outside the Vesta family. It is well known, however, that the proper frequencies of precession of pericenter g and longitude of the node s of terrestrial planets change when one or more of the other planets is not considered in the integration scheme. For instance, the g 4 and s 4 frequencies are different when the full solar system is considered or when only Mars and the Jovian planets are accounted for. In this work we consider the effect that including one or more (up to 51) massive asteroids in the integration scheme has on the Vesta orbit, and, indirectly on the statistics of changes in semi-major axis caused by close encounters with this massive asteroid. Methods. By using chaos indicators such as the maximum Lyapunov exponent, and integrations with symplectic integrators able to account for the interaction between a massive asteroid and a mass-less particle, we studied the problem of scattering caused by close encounters with (4) Vesta, when only (4) Vesta (and the eight planets) are considered, and when (4) Vesta and other massive main belt asteroids are also accounted for. Results. We find that (4) Vesta proper frequencies are dependent on the number of other massive asteroids considered in the integration scheme and that, as a result, the whole statistics of encounters with (4) Vesta is also affected. Variances of the change in proper a caused by the four most massive asteroids varied up to 36.3% in the five integration schemes that we used, and the number of encounters that caused the strongest changes in semi-major axis varied up to a factor 2. The indirect effect caused by the presence of other massive asteroids therefore introduces an additional source of uncertainty in estimating the long-term effect of close encounters with massive asteroids that was not accounted for in previous works on the subject, and that strongly affects estimates of its Hurst exponent.
The asteroid (10) Hygiea is the fourth largest asteroid of the Main Belt, by volume and mass, and it is the largest member of its own family. Previous works investigated the long-term effects of close encounters with (10) Hygiea of asteroids in the orbital region of the family, and analyzed the taxonomical and dynamical properties of members of this family. In this paper we apply the high-quality SDSS-MOC4 taxonomic scheme of DeMeo and Carry (2013) to members of the Hygiea family core and halo, we obtain an estimate of the minimum time and number of encounter necessary to obtain a 3σ (or 99.7%) compatible frequency distribution function of changes in proper a caused by close encounters with (10) Hygiea, we study the behavior of asteroids near secular resonance configurations, in the presence and absence of the Yarkovsky force, and obtain a first estimate of the age of the family based on orbital diffusion by the Yarkovsky and YORP effects with two methods.The Hygiea family is at least 2 Byr old, with an estimated age of T = 3200 +380 −120 Myr and a relatively large initial ejection velocity field, according to the approach of Vokrouhlický et al. (2006a, b). Surprisingly, we found that the family age can be shortened by ≃ 25% if the dynamical mobility caused by close encounters with (10) Hygiea is also accounted for, which opens interesting new research lines for the dynamical evolution of families associated with massive bodies. In our taxonomical analysis of the Hygiea asteroid family, we also identified a new V-type candidate: the asteroid (177904) (2005 SV5). If confirmed, this could be the fourth V-type object ever to be identified in the outer main belt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.