Metabolic acidosis is associated with enhanced renal ammoniagenesis which is regulated, in part, by glucocorticoids. The interaction between glucocorticoids and chronic metabolic acidosis on nitrogen utilization and muscle protein metabolism is unknown. In rats pair-fed by gavage, we found that chronic acidosis stunted growth and caused a 43% increase in urinary nitrogen and an 87% increase in urinary corticosterone. Net protein degradation in incubated epitrochlearis muscles from chronically acidotic rats was stimulated at all concentrations of insulin from o to 104 MU/ml. This effect of acidosis persisted despite supplementation of the media with amino acids with or without insulin, indomethacin, and inhibitors of lysosomal thiol cathepsins. Acidosis did not change protein synthesis; hence, the increase in net protein degradation was caused by stimulation of proteolysis. Acidosis did not increase glutamine production in muscle. The protein catabolic effect of acidosis required glucocorticoids; protein degradation was stimulated in muscle of acidotic, adrenalectomized rats only if they were treated with dexamethasone. Moreover, when nonacidotic animals were given 3 isg/100 g of body weight dexamethasone twice a day, muscle protein degradation was increased if the muscles were simply incubated in acidified media. We conclude that chronic metabolic acidosis depresses nitrogen utilization and increases glucocorticoid production. The combination of increased glucocorticoids and acidosis stimulates muscle proteolysis but does not affect protein synthesis. These changes in muscle protein metabolism may play a role in the defense against acidosis by providing amino acid nitrogen to support the glutamine production necessary for renal ammoniagenesis.
Chronic renal failure (CRF) is associated with metabolic acidosis and abnormal muscle protein metabolism. As we have shown that acidosis by itself stimulates muscle protein degradation by a glucocorticoid-dependent mechanism, we assessed the contribution of acidosis to changes in muscle protein turnover in CRF. A stable model of uremia was achieved in partially nephrectomized rats (plasma urea nitrogen, 100-120 mg/dl, blood bicarbonate < 21 meq/liter). CRF rats excreted 22% more nitrogen than pair-fed controls (P < 0.005), so muscle protein synthesis and degradation were measured in perfused hindquarters. CRF rats had a 90% increase in net protein degradation (P < 0.001); this was corrected by dietary bicarbonate. Correction of acidosis did not reduce the elevated corticosterone excretion rate of CRF rats, nor did it improve a second defect in muscle protein turnover, a 34% lower rate of insulin-stimulated protein synthesis. Thus, abnormal nitrogen production in CRF is due to accelerated muscle proteolysis caused by acidosis and an acidosis-independent inhibition of insulin-stimulated muscle protein synthesis.
Metabolic acidosis often leads to loss of body protein due mainly to accelerated protein breakdown in muscle. To identify which proteolytic pathway is activated, we measured protein degradation in incubated epitrochlearis muscles from acidotic (NNH4CI-treated) and pair-fed rats under conditions that block different proteolytic systems. Inhibiting lysosomal and calcium-activated proteases did not reduce the acidosis-induced increase in muscle proteolysis. However, when ATP production was also blocked, proteolysis fell to the same low level in muscles of acidotic and control rats. Acidosis, therefore, stimulates selectively an ATP-dependent, nonlysosomal, proteolytic process.We also examined whether the activated pathway involves ubiquitin and proteasomes (multicatalytic proteinases). Acidosis was associated with a 2.5-to 4-fold increase in ubiquitin mRNA in muscle. There was no increase in muscle heat shock protein 70 mRNA or in kidney ubiquitin mRNA, suggesting specificity of the response. Ubiquitin mRNA in muscle returned to control levels within 24 h after cessation of acidosis. mRNA for subunits of the proteasome (C2 and C3) in muscle were also increased 4-fold and 2.5-fold, respectively, with acidosis; mRNA for cathepsin B did not change. These results are consistent with, but do not prove that acidosis stimulates muscle proteolysis by activating the ATP-ubiquitin-proteasomedependent, proteolytic pathway. (J. Clin. Invest. 1994. 93: 2127-2133
To investigate branched-chain, amino acid metabolism (BCAA) in muscle in chronic renal failure (CRF), we studied rats with moderately severe uremia (PUN 110 approximately mg/dl) and spontaneous metabolic acidosis (bicarbonate, 19 +/- 1 mEq/liter). Plasma BCAA levels in CRF compared to pair-fed control rats were approximately 15% lower and muscle valine was 93 microM lower (P less than 0.05). BCAA metabolism was measured in incubated epitrochlearis muscles using L-[1-14C]valine or L-[1-14C]leucine in the presence and absence of insulin. BCAA decarboxylation was increased (P less than 0.05) and insulin-stimulated BCAA incorporation into protein was blunted (P less than 0.05) by CRF. Since we have found that metabolic acidosis, by itself, stimulates muscle branched-chain, ketoacid dehydrogenase activity, another group of CRF and control rats was given NaHCO3 which corrected the acidosis, but not the azotemia. BCAA decarboxylation in muscle was reduced in CRF rats given NaHCO3, and this was reflected in increased plasma and muscle BCAA concentrations. We conclude that in CRF, chronic metabolic acidosis stimulates BCAA decarboxylation in skeletal muscle and this could contribute to the reduced intra- and extracellular concentrations of BCAA. Correction of acidosis should be a goal of therapy in CRF, especially when dietary regimens restrict intake of BCAA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.