In August 2001, the worst flash flooding event of the Caspian Sea regions in over two centuries claimed over 300 lives after a weekend of heavy rainfall and brought about a devastating disaster in the Mother-Soo catchment, province of Golestan, Iran. As a result of this event, a series of site investigation were carried out to identify the pertinent factors that led to a flood of this magnitude. This paper identifies the fundamental causes of the frequent floods and debris flow occurrence in the area prone to flooding and analyzes the main runoff mechanism of these events. The maximum observed 24-h rainfall depths and maximum peak discharges at the existing gauges were compared with the depths of rainfall and the peak values corresponding to the August 2001 flood respectively. For the majority of the rain gauges, the rainfall depth exceeded those of historical recorded events. In Golestan dam, an increase of 7.5 times the maximum value observed in the past 20 years was noted. The flood height was 10-15 m while passing through the middle subcatchment area of Golestan National Park. The preliminary evaluation indicates the existence of bare soil in the catchment, movable material, steep slopes, high rainfall intensity, deterioration of pasture and forest land, and inappropriate agriculture and development practices as well as climate change were the main factors for the occurrence and the extent of the August 2001 disaster. Finally, due to the likelihood of flooding and debris flow events in future, some countermeasures are proposed.
One of the key inputs of a hydrologic budget is the potential evapotranspiration (PET), which represents the hypothetical upper limit to evapotranspirative water losses. However, different mathematical formulas proposed for defining PET often produce inconsistent results and challenge hydrological estimation. The objective of this study is to investigate the effects of the Priestley–Taylor (P–T), Hargreaves, and Penman–Monteith methods on daily streamflow simulation using the Soil and Water Assessment Tool (SWAT) for the southeastern United States. PET models are compared in terms of their sensitivity to the SWAT parameters and their ability to simulate daily streamflow over a five-year simulation period. The SWAT model forced by these three PET methods and by gauged climatic dataset showed more deficiency during low and peak flow estimates. Sensitive parameters vary in magnitudes with more skew and bias in saturated soil hydraulic conductivity and shallow aquifer properties. The results indicated that streamflow simulation using the P–T method performed well especially during extreme events’ simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.