Let C be a nondegenerate planar curve and for a real, positive decreasing function ψ let C(ψ) denote the set of simultaneously ψ-approximable points lying on C. We show that C is of Khintchine type for divergence; i.e. if a certain sum diverges then the one-dimensional Lebesgue measure on C of C(ψ) is full. We also obtain the Hausdorff measure analogue of the divergent Khintchine type result. In the case that C is a rational quadric the convergence counterparts of the divergent results are also obtained. Furthermore, for functions ψ with lower order in a critical range we determine a general, exact formula for the Hausdorff dimension of C(ψ). These results constitute the first precise and general results in the theory of simultaneous Diophantine approximation on manifolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.