Corpora lutea and follicles were taken from the ovaries of 12 ewes at intervals from the start of luteolysis until 3 days after ovulation. RIA analysis of the tissue oxytocin content showed that luteal oxytocin concentrations declined during luteolysis to reach basal values at about the time of the next ovulation. Oxytocin was first measurable in the walls of 3 out of 6 preovulatory follicles during the LH surge, with a small increase in concentration to 26.1 +/- 6.6 pg/mg before ovulation, and a further increase in the young corpus luteum to concentrations exceeding 1 ng/mg 2-3 days later. After the LH surge, oxytocin was also found in the follicular fluid at a concentration of 3.4 +/- 0.3 ng/ml. Using immunocytochemical techniques, oxytocin and neurophysin were first detected in the follicle wall immediately before ovulation, and were localized in the granulosa cells. After ovulation the stained cells initially formed strands which appeared to break down to clusters and then to individual cells as the corpus luteum matured. The immunocytochemical picture also suggested that neurophysin immunoreactivity increased within a few hours of ovulation but that processing to oxytocin may be delayed. Measurements of circulating oxytocin concentrations revealed a pulsatile release pattern throughout the follicular phase with the height of the pulses decreasing from 25 +/- 5 pg/ml during luteolysis to a minimum of 11 +/- 2 pg/ml during the LH surge.
This study characterizes an in vitro model of the "hunting response" (cold-induced vasoconstriction and vasodilatation). Two-centimeter segments of rat tail arteries (n = 15) were placed in a muscle bath (37 degrees C) and perfused (37 degrees C) at constant pressure (50 mmHg; flow = 14.5 +/- 0.8 ml/min) with physiological salt solution. Arteries constricted (23.7 +/- 2.8% decrease in flow) in response to activation of adrenergic nerves by electrical stimulation (9 V, 0.1-1.0 Hz, 0.1-4 ms). Cooling the bath to 4-12 degrees C (perfusate = 37 degrees C) caused further flow reduction (0-0.5 ml/min) in 14 arteries. After 20-40 min, 12 arteries dilated (7.4 +/- 1.2 ml/min) followed by constriction in 5-10 min. Typically, flow oscillated between periods of prolonged low flow and brief periods of high flow. Phentolamine (10(-6) M in bath) and acute adrenergic denervation blocked flow changes caused by decreased bath temperature. In unstimulated arteries, exogenous norepinephrine (6 X 10(-8) M in bath) decreased flow by 20%. On cooling (7-10 degrees C) flow decreased to zero, but did not oscillate. These results are consistent with the hypothesis that cold-induced vasoconstriction is caused by augmented smooth muscle responsiveness to norepinephrine, whereas cold-induced vasodilatation is caused by a cessation of transmitter release from adrenergic nerve endings.
1. The sensitivity of isolated tail artery strips from adult spontaneously hypertensive (SH) and normotensive rats to endogenously released and exogenously applied noradrenaline was compared. Release or displacement of endogenous noradrenaline was obtained with electrical stimulation, tyramine, elevated potassium and potassium-free solution. Isometric contractile responses were measured before and after acute denervation with 6-hydroxydopamine or before and after treatment with phentolamine. 2. The sensitivity to exogenous noradrenaline of innervated arterial strips was similar for SH and normotensive rats. Acute denervation produced a significant shift to the left in the concentration-response curve to noradrenaline only in SH rat arterial strips. 3. Contractile responses to electrical stimulation and tyramine were similar in both groups before denervation. Contractile responses to potassium-free solution were greater in SH than in normotensive arterial strips. After denervation the SH and normotensive vessels responded similarly to these interventions. Contractile responses to elevated potassium were similar in both groups before and after treatment with phentolamine. 4. The results suggest that the sensitivity of vascular smooth muscle cells to noradrenaline is greater in denervated arterial strips from SH rats than in those from normotensive rats. Under most experimental conditions, the junctional concentration of noradrenaline released or displaced from the adrenergic nerve endings is less in arterial strips from SH than in those from normotensive rats. Apparently, the adrenergic neuroeffector nerve terminals in hypertensive blood vessels can modulate the junctional concentration of noradrenaline so that the contractile response to this agent is similar to that in normotensive blood vessels.
Sialic acids are negatively charged groups in the carbohydrate side chains of glycolipids and glycoproteins which line the external membrane surface. The goal of this study was to characterize the effect of neuraminidase, which selectively cleaves sialic acids, on contractile activity in vascular smooth muscle. Helically cut strips of rat tail artery were mounted in an organ chamber and isometric contractions were recorded. Following treatment with neuraminidase (0.2 U/ml, 1 h), contractile responses to norepinephrine were significantly greater than control responses. Phasic contractions to norepinephrine in calcium-free medium were not altered by neuraminidase, whereas following calcium depletion with EGTA, contractile responses to added calcium were greater in enzyme-treated strips than in control when activated with norepinephrine. The augmentation of norepinephrine-induced contractions following neuraminidase treatment was reversed by incubation of the arterial strips with N-acetylneuraminic acid (10-4M). Neuraminidase had no effect on contractile responses to potassium chloride, angiotensin II, and caffeine. Biochemical assay indicated that approximately 63% of the total sialic acid residues were removed from the arterial strips during incubation with the enzyme. It is concluded that a component for the control of the transmembrane calcium movement in response to norepinephrine is dependent on the presence of sialic acid residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.