This paper discusses the role played by transfer reactions on the sub-barrier fusion enhancement. A semiclassical formalism is used to derive the transfer form factors, that are used in coupled-channel calculations. It is shown that transfer reactions that take place at small distances may be an important doorway to fusion. The relation between this formalism and the long-range absorptive fusion potential is also discussed. Results of calculations for the 16 O + A Sm, 32 S + 100 Mo and 16 O + 59 Co systems are presented.
Elastic and inelastic scattering angular distributions were measured for the 16 Oϩ 64 Zn reaction at bombarding energies close to the Coulomb barrier. The experimental data were analyzed within the optical model and coupled-channel model. An extended dispersion relation of integral quantities using a Gaussian weight was applied, instead of the normal relationship. Within this frame, the optical model parameters obtained from the data are in agreement with the dispersion relation and show the threshold anomaly at energies close to the Coulomb barrier. Analysis of the inelastic scattering angular distributions leads to some indications that an inelastic threshold anomaly is beginning to develop at energies lower than the ones for which our data were taken. ͓S0556-2813͑96͒01106-5͔
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.