We present the first version of the Automatic Learning for the Rapid Classification of Events (ALeRCE) broker light curve classifier. ALeRCE is currently processing the Zwicky Transient Facility (ZTF) alert stream, in preparation for the Vera C. Rubin Observatory. The ALeRCE light curve classifier uses variability features computed from the ZTF alert stream and colors obtained from AllWISE and ZTF photometry. We apply a balanced random forest algorithm with a two-level scheme where the top level classifies each source as periodic, stochastic, or transient, and the bottom level further resolves each of these hierarchical classes among 15 total classes. This classifier corresponds to the first attempt to classify multiple classes of stochastic variables (including core- and host-dominated active galactic nuclei, blazars, young stellar objects, and cataclysmic variables) in addition to different classes of periodic and transient sources, using real data. We created a labeled set using various public catalogs (such as the Catalina Surveys and Gaia DR2 variable stars catalogs, and the Million Quasars catalog), and we classify all objects with ≥6 g-band or ≥6 r-band detections in ZTF (868,371 sources as of 2020 June 9), providing updated classifications for sources with new alerts every day. For the top level we obtain macro-averaged precision and recall scores of 0.96 and 0.99, respectively, and for the bottom level we obtain macro-averaged precision and recall scores of 0.57 and 0.76, respectively. Updated classifications from the light curve classifier can be found at the ALeRCE Explorer website (http://alerce.online).
We introduce the Automatic Learning for the Rapid Classification of Events (ALeRCE) broker, an astronomical alert broker designed to provide a rapid and self-consistent classification of large etendue telescope alert streams, such as that provided by the Zwicky Transient Facility (ZTF) and, in the future, the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). ALeRCE is a Chilean-led broker run by an interdisciplinary team of astronomers and engineers working to become intermediaries between survey and follow-up facilities. ALeRCE uses a pipeline that includes the real-time ingestion, aggregation, cross-matching, machine-learning (ML) classification, and visualization of the ZTF alert stream. We use two classifiers: a stamp-based classifier, designed for rapid classification, and a light curve-based classifier, which uses the multiband flux evolution to achieve a more refined classification. We describe in detail our pipeline, data products, tools, and services, which are made public for the community (see https://alerce.science). Since we began operating our real-time ML classification of the ZTF alert stream in early 2019, we have grown a large community of active users around the globe. We describe our results to date, including the real-time processing of 1.5 × 10 8 alerts, the stamp classification of 3.4 × 10 7 objects, the light-curve classification of 1.1 × 10 6 objects, the report of 6162 supernova candidates, and different experiments using LSST-like alert streams. Finally, we discuss the challenges ahead in going from a single stream of alerts such as ZTF to a multistream ecosystem dominated by LSST.
We propose a new sequential classification model for astronomical objects based on a recurrent convolutional neural network (RCNN) which uses sequences of images as inputs. This approach avoids the computation of light curves or difference images. This is the first time that sequences of images are used directly for the classification of variable objects in astronomy. The second contribution of this work is the image simulation process. We generate synthetic image sequences that take into account the instrumental and observing conditions, obtaining a realistic, unevenly sampled, and variable noise set of movies for each astronomical object. The simulated dataset is used to train our RCNN classifier. This approach allows us to generate datasets to train and test our RCNN model for different astronomical surveys and telescopes. Moreover, using a simulated dataset is faster and more adaptable to different surveys and classification tasks. We aim at building a simulated dataset whose distribution is close enough to the real dataset, so that a fine tuning could match the distributions and solve the domain adaptation problem. To test the RCNN classifier trained with the synthetic dataset, we used real-world data from the High cadence Transient Survey (HiTS) obtaining an average recall of 85%, improved to 94% after performing fine tuning with 10 real samples per class. We compare the results of our RCNN model with those of a light curve random forest classifier. The proposed RCNN with fine tuning has a similar performance on the HiTS dataset compared to the light curve random forest classifier, trained on an augmented training set with 10 real samples per class. The RCNN approach presents several advantages in an alert stream classification scenario, such as a reduction of the data pre-processing, faster online evaluation and easier performance improvement using a few real data samples. The results obtained encourage us to use the proposed method for astronomical alert brokers systems that will process alert streams generated by new telescopes such as the Large Synoptic Survey Telescope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.