On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
We present the first extensive radio to γ-ray observations of a fast-rising blue optical transient (FBOT), AT 2018cow, over its first ∼100 days. AT 2018cow rose over a few days to a peak luminosity L pk ∼ 4 × 10 44 erg s −1 exceeding those of superluminous supernovae (SNe), before declining as L ∝ t −2 . Initial spectra at δt 15 days were mostly featureless and indicated large expansion velocities v ∼ 0.1 c and temperatures arXiv:1810.10720v1 [astro-ph.HE] 25 Oct 2018 2 MARGUTTI ET AL. reaching T ∼ 3 × 10 4 K. Later spectra revealed a persistent optically-thick photosphere and the emergence of H and He emission features with v ∼ 4000 km s −1 with no evidence for ejecta cooling. Our broad-band monitoring revealed a hard X-ray spectral component at E ≥ 10 keV, in addition to luminous and highly variable soft X-rays, with properties unprecedented among astronomical transients. An abrupt change in the X-ray decay rate and variability appears to accompany the change in optical spectral properties. AT 2018cow showed bright radio emission consistent with the interaction of a blastwave with v sh ∼ 0.1 c with a dense environment (Ṁ ∼ 10 −3 − 10 −4 M yr −1 for v w = 1000 km s −1 ). While these properties exclude 56 Ni-powered transients, our multi-wavelength analysis instead indicates that AT 2018cow harbored a "central engine", either a compact object (magnetar or black hole) or an embedded internal shock produced by interaction with a compact, dense circumstellar medium. The engine released ∼ 10 50 − 10 51.5 erg over ∼ 10 3 − 10 5 s and resides within lowmass fast-moving material with equatorial-polar density asymmetry (M ej,fast 0.3 M ). Successful SNe from low-mass H-rich stars (like electron-capture SNe) or failed explosions from blue supergiants satisfy these constraints. Intermediate-mass black-holes are disfavored by the large environmental density probed by the radio observations.
We present observations of SN 2015bn (= PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at redshift z = 0.1136. As well as being one of the closest SLSNe I yet discovered, it is intrinsically brighter (M U ≈ −23.1) and in a fainter galaxy (M B ≈ −16.0) than other SLSNe at z ∼ 0.1. We used this opportunity to collect the most extensive dataset for any SLSN I to date, including densely-sampled spectroscopy and photometry, from the UV to the NIR, spanning −50 to +250 days from optical maximum. SN 2015bn fades slowly, but exhibits surprising undulations in the light curve on a timescale of 30-50 days, especially in the UV. The spectrum shows extraordinarily slow evolution except for a rapid transformation between +7 and +20-30 days. No narrow emission lines from slow-moving material are observed at any phase. We derive physical properties including the bolometric luminosity, and find slow velocity evolution and non-monotonic temperature and radial evolution. A deep radio limit rules out a healthy off-axis gamma-ray burst, and places constraints on the pre-explosion mass loss. The data can be consistently explained by a 10 M stripped progenitor exploding with ∼ 10 51 erg kinetic energy, forming a magnetar with arXiv:1603.04748v3 [astro-ph.SR] 22 Jul 2016 a spin-down timescale of ∼ 20 d (thus avoiding a gamma-ray burst) that reheats the ejecta and drives ionization fronts. The most likely alternative scenario -interaction with ∼ 20 M of dense, inhomogeneous circumstellar material -can be tested with continuing radio follow-up.
We review the constraints from the nebular spectral modelling in the context of the various scenarios proposed for superluminous supernovae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.