published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
The tokamak à configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019–20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T e/T i ∼ 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with ‘small’ (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019–20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
Detachment is achieved in Magnum-PSI by increasing the neutral background pressure in the target chamber using gas puffing. The plasma is studied using the B2.5 multi fluid plasma code B2.5 coupled with Eunomia, a Monte Carlo solver for neutral species. This study focuses on the effect of increasing neutral background pressure to the plasma volumetric loss of particle, momentum and energy. The plasma particle and energy loss almost linearly scale with the increase of neutral background pressure, while the momentum loss does not scale as strongly. Plasma recombination processes include molecular activated recombination (MAR), dissociative attachment, and atomic recombination. Atomic recombination, which includes radiative and three-body recombination, is the most relevant plasma process in reducing the particle flux and, consequently, the heat flux to the target. The low temperature where atomic recombination becomes dominant is achieved by plasma cooling via elastic H+-H2 collisions. The transport of vibrationally excited H2 molecules out of the plasma serves as an additional electron cooling channel with relatively small contribution. Additionally, the transport of highly vibrational H2 has a significant impact in reducing the effective MAR and dissociative attachment collision rates and should be considered properly. The relevancy of MAR and atomic recombination occupy separate electron temperature regimes, respectively, at Te = 1.5 eV and Te = 0.3 eV, with dissociative attachment being relevant in the intermediary. Plasma cooling via elastic H+-H2 collisions is effective at Te ≤ 1 eV.
The leading candidate for impurity seeding in ITER is currently nitrogen. To date, there are only a few studies on the plasma chemistry driven by N 2 /H 2 seeding and its effect on the molecular-activated recombination of incoming atomic hydrogen ions in a detached-like scenario. Numerical simulations are needed to provide insights into such mechanisms. The numerous amount of plasma chemical reactions that may occur in such an environment cannot be entirely included in a 2 or 3-dimensional code such as Eirene. A complete global plasma model, implemented with more than 100 plasma chemical equations and 20 species, has been set up on the basis of Plasimo code. This study shows two main nitrogen-included recombination reaction paths resulted to be dominant, i.e. the ion conversion of NH followed by dissociative recombination and a proton transfer between H 2 + and N 2 , producing N 2 H +. These two processes are referred to as N-MAR (nitrogen-molecular activated recombination) and have subsequently been implemented into Eunomia, a spatially-resolved Monte Carlo code, designed to simulate the neutrals inventory in linear plasma machines such as Pilot-PSI and Magnum-PSI. To study the effect of N 2 on the overall recombination, three cases of study have been set up: from a defined puffing location with a constant total seeding rate of H 2 + N 2 , three N 2 ratios have been simulated, i.e. 0, 5 and 10%. The parameter monitored is the density of atomic hydrogen, being the final hydrogenic product of any recombination mechanism in the scenario considered. The difference in H density between the 0% case and the 10% case is about a factor 3. The importance of NH as electron donor is highlighted and N-MARs confirmed as reaction routes enhancing the conversion of ions to neutrals, making the heat loads to the divertor plate more tolerable. This work is a further step towards the full understanding of the role of N 2-H 2 molecules in a detached divertor plasma.
The interaction among plasma, neutrals and surfaces in fusion reactors is of immense importance for heat and particle control, specially for the next generation of devices. Heat loads of 10 MW m-2 are expected for steady state operation at ITER and up to 20 MW m-2 in slow transient situations. To study the complex physics appearing between the plasma and the divertor material, as well as techniques for heat flux mitigation, plasma linear devices are employed. Magnum-PSI, located at DIFFER, can reproduce heat and particle loads expected at ITER. However, due to the complexity of the plasma-wall interaction, numerical models are required to better understand the experiments and to extrapolate the results to a tokamak divertor configuration. For tokamak geometries, SOLPS-ITER (formerly known as B2.5-Eirene) is employed to solve the plasma and neutral distribution in a coupled way. However, the utilization of this code for linear devices is not straight forward. Thus, a neutral module was developed with linear devices in mind, named Eunomia. Nevertheless, there is still a relevant interest in using SOLPS-ITER with linear devices, as it allows to easily transfer knowledge about relevant atomic and molecular processes close to the surface and the effect of different mitigation techniques. This work presents a systematic comparison between the two neutral modules, Eirene and Eunomia, in stand-alone and coupled runs. Special attention is paid to the implementation of plasma-neutral interactions, in which both codes diverge significantly. The sources of particles and energy that are used by B2.5 in a coupled run are analysed. Significant differences in the implementation of electron impact ionization, molecular assisted recombination and proton-molecule elastic collisions lead to disparate sources of particles and energy and, in some cases, differences in the distribution of neutrals achieved by each code. Moreover, a double counting in proton-atom collisions was identified in Eunomia as a result of this analysis, artificially increasing the plasma-neutral sink of energy. These would lead to different plasma evolutions in coupled runs. Nevertheless, additional free parameters in both coupled code suites leave sufficient freedom to match experimental data. Additional data would be required to further constrain these parameters and the coupled solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.