BackgroundRhipicephalus sanguineus is a ubiquitous tick responsible for transmitting Ehrlichia canis and most likely Anaplasma platys to dogs, as either single or co-infections. The objective of this study was to assess the effects of either simultaneous or sequential experimental infections with E. canis and A. platys on hematological and serological parameters, duration of infection, and efficacy of doxycycline therapy in dogs infected with one or both organisms. Six dogs per group were either uninfected, A. platys infected, E. canis infected, A. platys and E. canis co-infected, A. platys infected and E. canis challenged or E. canis infected and A. platys challenged at day 112 post-infection (PI). Doxycycline treatment was initiated at 211 days PI, followed by dexamethasone immunosuppression beginning 410 days PI.ResultsInitially, transient decreases in hematocrit occurred in all groups infected with E. canis, but the mean hematocrit was significantly lower in the A. platys and E. canis co-infected group. All dogs except the controls developed marked thrombocytopenia after initial infection followed by gradually increased platelet counts by 112 days PI in groups with the single infections, while platelet counts remained significantly lower in the A. platys and E. canis co-infected group. Both sequential and simultaneous infections of A. platys and E. canis produced an enhanced humoral immune response to A. platys when compared to infection with A. platys alone. Likewise, co-infection with E. canis and A. platys resulted in a more persistent A. platys infection compared to dogs infected with A. platys only, but nearly all A. platys infected dogs became A. platys PCR negative prior to doxycycline treatment. E. canis infected dogs, whether single or co-infected, remained thrombocytopenic and E. canis PCR positive in blood for 420 days. When treated with doxycycline, all E. canis infected dogs became E. canis PCR negative and the thrombocytopenia resolved. Despite immunosuppression, neither A. platys nor E. canis DNA was PCR amplified from doxycycline-treated dogs.ConclusionsThe results of this study demonstrate that simultaneous or sequential infection with A. platys and E. canis can alter various pathophysiological parameters in experimentally infected dogs, and because natural exposure to multiple tick-borne pathogens occurs frequently in dogs, awareness of co-infection is important in clinical practice.
BackgroundLong‐term microscopic agglutination test (MAT) results after vaccination with 4‐serovar Leptospira vaccines are not available for all vaccines used in client‐owned dogs.Hypothesis/ObjectivesTo determine antibody responses of client‐owned dogs given 1 of 4 commercially available Leptospira vaccines.AnimalsHealthy client‐owned dogs (n = 32) with no history of Leptospira vaccination for at least the previous year.MethodsDogs were given 1 of 4 Leptospira vaccines on week 0 and then approximately on week 3 and week 52. Sera were collected before vaccine administration on week 0 and then within 3 days of week 3, within 2 days of week 4, and approximately on weeks 7, 15, 29, 52, and 56. Antibody titers against Leptospira serovars bratislava, canicola, grippotyphosa, hardjo, icterohemorrhagiae, and pomona and were determined by MAT.ResultsWhen compared among vaccines, MAT results varied in maximal titers, the serovars inducing maximal titers, and the time required to reach maximal titers. Each vaccine induced at least some MAT titers ≥1 : 800. Most dogs were negative for antibodies against all serovars 1 year after vaccination, and anamnestic responses were variable.Conclusions and Clinical ImportanceDogs vaccinated with Leptospira vaccines have variable MAT titers over time, and antibodies should not be used to predict resistance to Leptospira infection. MAT titers ≥1 : 800 can develop after Leptospira spp. vaccination, which can complicate the clinical diagnosis of leptospirosis.
BackgroundVector-borne pathogens are emerging concerns in multiple regions of Canada. Determining regional prevalence of canine vector-borne pathogens and documenting change will improve clinician awareness, enable targeted prevention, enhance diagnosis and ideally reduce the risk of disease. Study objectives were to: (i) estimate the prevalence of positive canine vector-borne test results from samples submitted in Canada; (ii) assess change in prevalence over time, from baseline (2008) to 2015; and (iii) estimate the prevalence of pathogen co-infections.MethodsThis repeat cross-sectional study evaluated 753,468 test results for D. immitis antigen and B. burgdorferi, Ehrlichia canis/ewingii/muris serology, and 753,208 test results for Anaplasma phagocytophilum/platys serology using the SNAP® 4Dx®Test and SNAP 4Dx® Plus Test.ResultsBased on all submitted samples from Canada (2008–2015), the period seroprevalence of B. burgdorferi, Ehrlichia spp., Anaplasma spp. and D. immitis antigen were 2.0%, 0.5%, 0.4% and 0.2%, respectively. Over the 7 years (2008 compared to 2015) we observed a significant increase in seroprevalence for B. burgdorferi (144.4%) and Ehrlichia spp. (150%). Co-infections (positive for two or more pathogens on a single 4 pathogen test kit) were estimated at 5.4% (1162/21,612) of total positive tests.ConclusionsThe temporal rise and geographical differences in prevalence detected for these pathogens (notably B. burgdorferi) are consistent with anecdotal information on canine illness related to tick-borne pathogen exposure in multiple regions of Canada, particularly canine Lyme disease.Electronic supplementary materialThe online version of this article (10.1186/s13071-019-3299-9) contains supplementary material, which is available to authorized users.
Dogs used for dogfighting often receive minimal preventive health care, and the potential for spread of infectious diseases is high. The purpose of this study was to describe the prevalence of infectious diseases in dogs rescued from fighting operations to guide medical protocols for their immediate and long-term care. A total of 269 pit bull-type dogs were seized in a multi-state investigation. Fleas were present on most dogs, but few ticks were observed. Testing performed at intake included packed cell volume (PCV), serology and PCR for vector-borne pathogens, and fecal analysis. The most common infections were Babesia gibsoni (39%), ‘Candidatus Mycoplasma haematoparvum’ (32%), Mycoplasma haemocanis (30%), Dirofilaria immitis (12%), and Ancylostoma (23%). Anemia was associated with B. gibsoni infection (63% of infected dogs, Odds ratio=2.5, P<0.001), but not with hemotropic mycoplasmas or Ancylostoma. Pit bull heritage and dogfighting are known risk factors for B. gibsoni infection, possibly via blood transmission from bites and vertical transmission. Hemotropic mycoplasmas have a similar risk pattern. Empirical care for dogs from dogfighting cases should include broad-spectrum internal and external parasiticides and monitoring for anemia. Dogfighting case responders should be prepared for mass screening and treatment of B. gibsoni and heartworm infections and should implement protocols to prevent transmission of infectious and zoonotic diseases in the shelter and following adoption. Former fighting dogs and dogs with possible dog bite scars should not be used as blood donors due to the risk of vector-borne pathogens that can escape detection and for which curative treatment is difficult to document.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.