BackgroundA shift towards less burdening and more patient friendly treatments for breast cancer is currently ongoing. In low-risk patients with early-stage disease, accelerated partial breast irradiation (APBI) is an alternative for whole breast irradiation following breast-conserving surgery. MRI-guided single dose ablative APBI has the potential to offer a minimally burdening, non-invasive treatment that could replace current breast-conserving therapy.MethodsThe ABLATIVE study is a prospective, single arm, multicenter study evaluating preoperative, single dose, ablative radiation treatment in patients with early-stage breast cancer. Patients with core biopsy proven non-lobular invasive breast cancer, (estrogen receptor positive, Her2 negative, maximum tumor size 3.0 cm on diagnostic MRI) and a negative sentinel node biopsy are eligible. Radiotherapy (RT) planning will be performed using a contrast enhanced (CE) planning CT-scan, co-registered with a CE-MRI, both in supine RT position. A total of twenty-five consecutive patients will be treated with a single ablative RT dose of 20 Gy to the tumor and 15 Gy to the tumorbed. Follow-up MRIs are scheduled within 1 week, 2, 4 and 6 months after single-dose RT. Breast-conserving surgery is scheduled at six months following RT.Primary study endpoint is pathological complete response. Secondary study endpoints are the radiological response and toxicity. Furthermore, patients will fill out questionnaires on quality of life and functional status. Cosmetic outcome will be evaluated by the treating radiation oncologist, patient and ‘Breast Cancer Conservation Treatment cosmetic results’ software. Recurrence and survival rates will be assessed. The patients will be followed up to 10 years after diagnosis. If patients give additional informed consent, a biopsy and a part of the irradiated specimen will be stored at the local Biobank and used for future research on radiotherapy response associated genotyping.DiscussionThe ABLATIVE study evaluates MRI-guided single dose ablative RT in patients with early-stage breast cancer, aiming at a less burdening and non-invasive alternative for current breast-conserving treatment.Trial registrationClinicalTrials.gov registration number NCT02316561. The trial was registrated prospectively on October 10th 2014.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-017-3144-5) contains supplementary material, which is available to authorized users.
In early-stage breast-cancer patients, accelerated partial-breast irradiation techniques (APBI) and hypofractionation are increasingly implemented after breast-conserving surgery (BCS). For a safe and effective radiation therapy (RT), the influence of intra-fraction motion during dose delivery becomes more important as associated fraction durations increase and targets become smaller. Current image-guidance techniques are insufficient to characterize local target movement in high temporal and spatial resolution for extended durations. Magnetic resonance imaging (MRI) can provide high soft-tissue contrast, allow fast imaging, and acquire images during longer periods. The goal of this study was to quantify intra-fraction motion using MRI scans from 21 breast-cancer patients, before and after BCS, in supine RT position, on two time scales. High-temporal 2-dimensional (2D) MRI scans (cine-MRI), acquired every 0.3 s during 2 min, and three 3D MRI scans, acquired over 20 min, were performed. The tumor (bed) and whole breast were delineated on 3D scans and delineations were transferred to the cine-MRI series. Consecutive scans were rigidly registered and delineations were transformed accordingly. Motion in sub-second time-scale (derived from cine-MRI) was generally regular and limited to a median of 2 mm. Infrequently, large deviations were observed, induced by deep inspiration, but these were temporary. Movement on multi-minute scale (derived from 3D MRI) varied more, although medians were restricted to 2.2 mm or lower. Large whole-body displacements (up to 14 mm over 19 min) were sparsely observed. The impact of motion on standard RT techniques is likely small. However, in novel hypofractionated APBI techniques, whole-body shifts may affect adequate RT delivery, given the increasing fraction durations and smaller targets. Motion management may thus be required. For this, on-line MRI guidance could be provided by a hybrid MRI/RT modality, such as the University Medical Center Utrecht MRI linear accelerator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.