A new method for studying brain microcirculation is described. Both fluorescently labeled erythrocytes and plasma were visualized on-line through a closed cranial window in anesthetized rats, using laser-scanning two-dimension confocal microscopy. Video images of capillaries, arterioles, and venules were digitized off-line to measure microvessel diameter and labeled erythrocyte flow and velocity in parenchymal capillaries up to 200 microm beneath the brain surface. The method was used to analyze the rapid adaptation of microcirculation to a brief decrease in perfusion pressure. Twenty-second periods of forebrain ischemia were induced using the tour-vessel occlusion model in eight rats. EEG, arterial blood pressure, and body temperature were continuously controlled. In all conditions, labeled erythrocyte flow and velocity were both very heterogeneous in capillaries. During ischemia, capillary perfusion was close to 0, but a low blood flow persisted in arterioles and venules, while EEG was flattening. The arteriole and venule diameter did not significantly change. At the unclamping of carotid arteries, there was an instantaneous increase (by about 150%) of arteriole diameter. Capillary erythrocyte flow and velocity increased within 5 seconds, up to, respectively, 346 +/- 229% and 233 +/- 156% of their basal value. No capillary recruitment of erythrocytes was detected. All variables returned to their basal levels within less than 100 seconds after declamping. The data are discussed in terms of a possible involvement of shear stress in the reperfusion period.
Our previous studies on cerebral metabolic activity in genetic absence epilepsy rats from Strasbourg (GAERS) were in favor of decreased functional activity during absences and normal or increased interictal activity. To ascertain that hypothesis, in the present study we performed continuous measurements of CBF in both children with typical absence epilepsy and GAERS, using Doppler ultrasonography and laser-Doppler flowmetry, respectively. CBF fluctuations during absences were recorded in four children between 5 and 6 years of age and 16 adult GAERS. In both children and animals, CBF measured in the middle cerebral artery and cortical capillaries, respectively, significantly decreased by a median value of 20-24% under basal levels during spontaneous absences. In GAERS, CBF levels were continuously decreased during haloperidol-induced absence status epilepticus, while they were not affected by ethosuximide. Conversely, convulsive seizures induced in rats either by kainate or picrotoxin led to a 175-664% increase in CBF levels. In conclusion, the present data show that during spontaneous absences, CBF decreases under basal levels in both cortical capillaries (GAERS) and the middle cerebral artery (children). Moreover, these fluctuations occur in vessels with normal vascular reactivity, are not mediated by changes in PO2, PCO2, or arterial blood pressure, and represent rather a response to reduced metabolic demand.
The experiment examines whether the mechanisms responsible for the autoregulation of cerebral blood flow (CBF) in response to hypotension were affected during the initial phase of cortical spreading depression (CSD). CSD was induced by a cortical pinprick in anesthetized rabbits, and CBF was measured by laser-Doppler flowmetry through a chronically implanted Plexiglas window. The reactivity to CO2 and papaverine was also studied before and after CSD. Fifteen minutes after CSD, autoregulatory vasodilation was reduced (P < 0.01). This impairment was reversible, since the autoregulatory response was restored 35 min after CSD. The time course of the reactivity to papaverine after CSD paralleled the autoregulatory response, with a significant correlation between the two reactivities (r = 0.47; P < 0.01). Conversely, the reactivity to CO2 was significantly reduced after CSD (P < 0.001) and remained affected for at least 95 min. We conclude that the mechanisms underlying autoregulation are transiently disturbed by CSD and that these mechanisms are not mediated by an accumulation of CO2 but seem instead to be related to an increase in adenosine 3',5'-cyclic monophosphate concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.