Thanks to the progress made in chemical technology (particularly in the methodologies of stereoselective syntheses and analyses) along with regulatory measures, the number of new chiral drugs registered in the form of pure enantiomers has increased over the past decade. In addition, the pharmacological and pharmacokinetic properties of the individual enantiomers of already-introduced racemic drugs are being re-examined. The use of the pure enantiomer of a drug that has been used to date in the form of a racemate is called a “chiral switch”. A re-examination of the properties of the pure enantiomers of racemates has taken place for local anesthetics, which represent a group of drugs which have long been used. Differences in (R) and (S)-enantiomers were found in terms of pharmacodynamic and pharmacokinetic activity as well as in toxicity. Levobupivacaine and robivacaine were introduced into practice as pure (S)-(−)-enantiomers, exhibiting more favorable properties than their (R)-(+)-stereoisomers or racemates. This overview focuses on the influence of chirality on the pharmacological and toxicological activity of local anesthetics as well as on individual HPLC and capillary electrophoresis (CE) methods used for enantioseparation and the pharmacokinetic study of individual local anesthetics with a chiral center.
The present survey concentrates on pharmacodynamics and pharmacokinetics of selected β-adrenergic blockers from the point of view of their stereochemistry. It could be shown that the activity in the arylaminoethanol and aryloxyaminopropanol group of β-blockers is higher in their (–)-enantiomers as compared with the (+)-enantiomers. The stereoisomers differ also in other types of bioactivity as well as in toxicity. The particular pharmacokinetic stages such as resorption, distribution, and metabolism are discussed in regard to their stereochemistry.
Abstractβ2-Agonists (β2-adrenergic agonists, bronchodilatants, and sympathomimetic drugs) are a group of drugs that are mainly used in asthma and obstructive pulmonary diseases. In practice, the substances used to contain one or more stereogenic centers in their structure and their enantiomers exhibit different pharmacological properties. In terms of bronchodilatory activity, (R)-enantiomers showed higher activity. The investigation of stereoselectivity in action and disposition of chiral drugs together with the preparation of pure enantiomer drugs calls for efficient stereoselective analytical methods. The overview focuses on the stereoselectivity in pharmacodynamics and pharmacokinetics of β2-agonists and summarizes the stereoselective analytical methods for the enantioseparation of racemic beta-agonists (HPLC, LC-MS, GC, TLC, CE). Some methods of the stereoselective synthesis for β2-agonists preparation are also presented.
The enantiomeric separation of alkylaminoderivatives of aryloxypropanols using macrocyclic bonded chiral stationary phases was studied. Teicoplanin and vancomycin chiral stationary phases were used to separate a large number of derivatives of aryloxypropanol enantiomers by HPLC in the polar-organic mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.