Abstract:The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI [Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset.The characteristic most often associated with neutrinos is a very small probability of interaction with other forms of matter, allowing them to traverse astronomical objects while undergoing no energy loss. As a result, large targets (tons to tens of kilotons) are used for their detection. The discovery of a weak neutral current in neutrino interactions (1) implied that neutrinos were capable of coupling to quarks through the exchange of neutral Z bosons. Soon thereafter it was suggested that this mechanism should also lead to coherent interactions between neutrinos and all nucleons present in an atomic nucleus (2). This possibility would exist only as long as the momentum exchanged remained significantly smaller than the inverse of the nuclear size ( Fig. 1A), effectively restricting the process to neutrino energies below a few tens of MeV.The enhancement to the probability of interaction (scattering cross-section) would however be very large when compared to interactions with isolated nucleons, approximately scaling with the square of the number of neutrons in the nucleus (2, 3). For heavy nuclei and sufficiently intense neutrino sources, this can lead to a dramatic reduction in detector mass, down to a few kilograms.Coherent elastic neutrino-nucleus scattering (CEnNS) has evaded experimental demonstration for forty-three years following its first theoretical description. This is somewhat surprising, in view of the magnitude of its expected cross-section relative to other tried-andtested neutrino couplings (Fig. 1B), and of the availability of suitable neutrino sources: solar, atmospheric and terrestrial, supernova bursts, nuclear reactors, spallation facilities, and certain radioisotopes (3). This delay stems from the difficulty in detecting the low-energy (few keV) nuclear recoil produced as the single outcome of the interaction. Compared to a minimum ionizing particle of the same energy, a recoiling nucleus has a diminished ability to generate measurable scintillation or ionization in common radiation detector materials. This is exacerbated by a trade-off between the enhancement to the CEnNS cross-section brought about by a large nuclear mass, and the smaller maxi...
The opener muscle in the walking legs of the crayfish (Procambarus clarkii) is innervated by only one excitatory motor neuron, yet excitatory postsynaptic potentials (EPSPs) of proximal fibers are eightfold larger than those of central muscle fibers at low frequencies of activation, due in large measure to differences in presynaptic properties. We investigated quantal release properties, calcium signals, and ultrastructure of presynaptic terminals to elucidate factors that could account for the physiological differences. Focal macropatch electrodes were placed over individual visualized terminal varicosities to obtain records of quantal contributions to the excitatory junctional current (EJC). At low frequencies of activation, mean quantal content is greater for proximal than for central varicosities. This difference is due to a higher probability of release per synapse, and not to a larger number of active synapses. Recorded varicosities were labeled with fluorescent beads deposited by the electrode. These beads adhered to the muscle fibers, outlining the recorded site for subsequent serial thin sectioning and reconstruction from electron micrographs. Comparisons of structure and function were made for individual varicosities. The number of active zones per terminal surface area and the number of synapses with multiple active zones (complex synapses) were greater in high-output varicosities. Calcium indicators were loaded into proximal and central nerve terminals by axonal injection to compare the relative differences in calcium buildup during stimulation. Presynaptic calcium signals were larger for proximal varicosities than for central varicosities.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.