Several reports indicate that lactate can serve as an energy substrate for the brain. The rate of oxidation of this substrate by cultured rat brain astrocytes was 3-fold higher than the rate with glucose, suggesting that lactate can serve as an energy source for these cells. Since transport into the astrocytes may play an important role in regulating nutrient use by individuals types of brain cells, we investigated the uptake of L-[U-14C]lactate by primary cultures of rat brain astrocytes. Measurement of the net uptake suggested two carrier-mediated mechanisms and an Eadie-Hofstee type plot of the data supported this conclusion revealing 2 Km values of 0.49 and 11.38 mM and Vmax values of 16.55 and 173.84 nmol/min/mg protein, respectively. The rate of uptake was temperature dependent and was 3-fold higher at pH 6.2 than at 7.4, but was 50% less at pH 8.2. Although the lactate uptake carrier systems in astrocytes appeared to be labile when incubated in phosphate buffered saline for 20 minutes, the uptake process exhibited an accelerative exchange mechanism. In addition, lactate uptake was altered by several metabolic inhibitors and effectors. Potassium cyanide and alpha-cyano-4-hydroxycinnamate inhibited lactate uptake, but mersalyl had little or no effect. Phenylpyruvate, alpha-ketoisocaproate, and 3-hydroxybutyrate at 5 and 10 mM greatly attenuated the rate of lactate uptake. These results suggest that the availability of lactate as an energy source is regulated in part by a biphasic transport system in primary astrocytes.
Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-[U-14C]malate in primary cultures of rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from 0.01 mM and 0.5 mM malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain. Both the biphasic kinetics and the differential action of many of the effectors on the 14CO2 production from 0.01 mM and 0.5 mM malate provide evidence for the presence of more than one pool of malate metabolism in cultured rat brain astrocytes.
Since lactate released by glial cells may be a key substrate for energy in neurons, the kinetics for the uptake of L-[U-14C]lactate by cortical synaptic terminals from 7- to 8-week-old rat brain were determined. Lactate uptake was temperature-dependent, and increased by 64.9% at pH 6.2, and decreased by 43.4% at pH 8.2 relative to uptake at pH 7.3. Uptake of monocarboxylic acids was saturable with increasing substrate concentration. Eadie-Hofstee plots of the data gave evidence of two carrier-mediated uptake mechanisms with a high-affinity Km of 0.66 mM and Vmax of 3.66 mM for pyruvate, and a low-affinity system with a Km of 9.9 mM for both lactate and pyruvate and Vmax values of 16.6 and 23.1 nmol/30 s/mg protein for lactate and pyruvate, respectively. Saturable uptake was seen in the presence of 10 mM α-cyano-4-hydroxycinnamate. Lactate transport by synaptic terminals was much more sensitive to inhibition by sulfhydryl reagents than transport in astrocytes. Addition of 0.5 and 2 mM mersalyl decreased the uptake of 1 mM lactate by synaptic terminals by 59.3 and 66.37%, respectively. Pyruvate moderately decreased lactate transport, whereas 3-hydroxybutyrate had little effect. Quercetin, an inhibitor of lactate release, had little effect on the content of 14C lactate in synaptic terminals, supporting the concept that the majority of lactate produced within brain is from glial cells. Oxidation of L-[U-14C]lactate by synaptosomes was saturable, and yielded a Km of 1.23 mM and a Vmax of 116 nmol/h/mg protein. Overall the studies show that synaptic terminals from adult brain have a high capacity for transport and oxidation of lactate, consistent with the proposed role for this compound in metabolic trafficking in brain. Furthermore, the data provide kinetic evidence of two carrier-mediated mechanisms for monocarboxylic acid transport by synaptosomes and demonstrate that uptake of lactate by synaptic terminals is regulated differently than transport by astrocytes. Uptake of lactate by synaptic terminals also has differences from the systems described for neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.