Abstract. This paper shows a fuzzy logic speech/non-speech discrimination method for improving the performance of speech processing systems working in noise environments. The fuzzy system is based on a Sugeno inference engine with membership functions defined as combination of two Gaussian functions. The rule base consists of ten fuzzy if then statements defined in terms of the denoised subband signal-tonoise ratios (SNRs) and the zero crossing rates (ZCRs). Its operation is optimized by means of a hybrid training algorithm combining the leastsquares method and the backpropagation gradient descent method for training membership function parameters. The experiments conducted on the Spanish SpeechDat-Car database shows that the proposed method yields clear improvements over a set of standardized VADs for discontinuous transmission (DTX) and distributed speech recognition (DSR) and also over recently published VAD methods.
This paper shows an effective speech/pause discrimination method combining spectral noise filtering and fuzzy logic rules. The fuzzy system is based on a Sugeno inference engine with membership functions defined as combination of two Gaussian functions. Its operation is optimized by means of a hybrid training algorithm combining the least-squares method and the backpropagation gradient descent method for training membership function parameters. The fuzzy classifier consists of ten fuzzy rules defined in terms of the denoised subband signal-to-noise ratios (SNRs) and the zero crossing rate (ZCRs). An exhaustive analysis conducted on the Spanish SpeechDat-Car databases is conducted in order to assess the performance of the proposed method and to compare it to existing standard VAD methods. The results show improvements in detection accuracy over standard VADs and a representative set of recently reported VAD algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.