Measurements of the load dependence of the radial crack size with Vickers and Berkovich indenters are compared for a range of materials. It is found that the extent of radial cracks was slightly larger for the Berkovich than for the Vickers indenter. The observations reveal that cracks from a Berkovich indenter are best described by an expression developed by Laugier combined with a modification proposed by Ouchterlony to account for the number of radial cracks. It was also found that the Berkovich indenter, which offers advantages for ultramicroindentation, gave more consistent toughness values at lower loads than a Vickers indenter.
The fracture toughness of small volumes of brittle materials may be investigated by using pyramidal indenters to initiate radial cracks. The length of these cracks, together with indenting load and the hardness to modulus ratio of the material, were combined to calculate the critical stress intensity factor Kc pertinent to fracture toughness. Modulus and hardness may be obtained from the literature or may be measured using nanoindentation techniques. If the material volume is very small, such as single grains in a conglomerate, a reduction of scale may be obtained by reducing the internal face angles of the indenter. This encourages crack initiation at lower loads, but cracks produced at very low loads are short and difficult to measure. Experiments on fused silica and glassy carbon suggested that radial cracks are initiated during loading and that when indenters with sufficiently small angles are used these cracks immediately pop-in, to become fully developed median/radial crack systems. Following pop-in, the rate of penetration of the indenter increases and at higher loads there is an extra increment of penetration over that which would otherwise have occurred. In this study a method is described whereby this extra penetration may be determined. Then for two dissimilar brittle materials, crack length is shown to be correlated with extra penetration leading to a relationship that may possibly avoid the necessity for crack-length measurement.
The properties of a suite of experimental cokes made from Australian coals were studied. Image analysis was used to quantify the coke pore and pore wall microstructure, while ultra-micro indentation characterised the strength of the coke wall textures. The micro-properties were compared with compact tension measurements of bulk coke strength. The microstructural features of good cokes included a relatively thick coke wall, and a pore size distribution that has small mean pore size combined with a high pore density. It was found that inert maceral derived coke microtextures displayed the highest hardness values. The hardness of reactive maceral derived coke was lower and decreased with increasing mosaic size. For the set of cokes studied, the hardness and modulus were comparable for the same coke microtexture, irrespective of the coal source. Fracture toughness could not be determined for the coarser mosaic textures using the crack measurement approach. For those textures where measurements were possible, fracture toughness for the components was found to be independent of the parent coal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.