A modified suspension polymerization was used for the preparation of the mesoporous magnetic-poly(divinylbenzene-co-vinylimidazole) (m-poly(DVB-VIM)) microbeads in size 53-212 μm of average diameter. The specific surface area and the DVB/VIM mol ratio of the microspheres were determined as 29.47 m 2 /g and 1:4 mol/mol with Fe 3 O 4 , respectively. The physicochemical studies of adsorption of Ni(II) ions from aqueous solutions such as pH, initial concentration, amount of mesoporous m-poly(DVB-VIM) microbeads, contact time, and temperature onto the m-poly(DVB-VIM) microspheres were carried out. The maximum adsorption capacities of the m-poly(DVB-VIM) microspheres towards Ni(II) ions were determined as 13.51, 20.14, 21.00 and 23.62 mg/g at 277 K, 298 K, 318 K, and 338 K, respectively. The dynamic and equilibrium adsorption behaviours of the system were adequately described by the pseudo-second-order kinetic and the Langmuir isotherm models, respectively. Various thermodynamic parameters, such as the Gibbs' free energy change (ΔG o ), the standard enthalpy change (ΔH o ) and the standard entropy change (ΔS o ) were also determined. Morever, after use in the adsorption, the m-poly(DVB-VIM) microbeads with paramagnetic property was separated from the via the applied magnetic force. These results indicate that the material studied could be used as a purifier for the removal of Ni(II) ions from water and wastewater under magnetic field.Keywords: Magnetic polymers; Adsorption isotherm; Adsorption kinetic; Adsorption thermodynamic; Ni(II) ions. R L the dimensionless separation factor k 1 the rate constant of pseudo first-order adsorption (min -1 ) k 2 the rate constant of pseudo second-order adsorption ((g/mg) min -1 ) k R the rate constant for the modified Ritchie's-second-order model (min -1 ) k i the intraparticle diffusion rate constant (mg/g min 0.5 ) R 2 linear regression coefficient t time (min)T temperature (K)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.