Context. Although they are the main constituents of the Galactic disk population, for half of the open clusters in the Milky Way reported in the literature nothing is known except the raw position and an approximate size. Aims. The main goal of this study is to determine a full set of uniform spatial, structural, kinematic, and astrophysical parameters for as many known open clusters as possible. Methods. On the basis of stellar data from PPMXL and 2MASS, we used a dedicated data-processing pipeline to determine kinematic and photometric membership probabilities for stars in a cluster region. Results. For an input list of 3784 targets from the literature, we confirm that 3006 are real objects, the vast majority of them are open clusters, but associations and globular clusters are also present. For each confirmed object we determined the exact position of the cluster centre, the apparent size, proper motion, distance, colour excess, and age. For about 1500 clusters, these basic astrophysical parameters have been determined for the first time. For the bulk of the clusters we also derived the tidal radius. We estimated additionally average radial velocities for more than 30% of the confirmed clusters. The present sample (called MWSC) reaches both the central parts of the Milky Way and its outer regions. It is almost complete up to 1.8 kpc from the Sun and also covers neighbouring spiral arms. However, for a small subset of the oldest open clusters (log t 9) we found some evidence of incompleteness within about 1 kpc from the Sun.
Abstract. We present a list of 130 Galactic Open Clusters, found in the All-Sky Compiled Catalogue of 2.5 Million Stars (ASCC-2.5). For these clusters we determined a homogeneous set of astrophysical parameters such as size, membership, motion, distance and age. In a previous work, 520 already-known open clusters out of a sample of 1700 clusters from the literature were confirmed in the ASCC-2.5 using independent, objective methods. Using these methods the whole sky was systematically screened for new clusters. The newly detected clusters show the same distribution over the sky as the known ones. It is found that without the a priori knowledge about existing clusters our search lead to clusters which are, on average, brighter, have more members and cover larger angular radii than the 520 previously-known ones.
We present the discovery and spectroscopic identification of two very high proper-motion ancient white dwarf stars, found in a systematic proper-motion survey. Their kinematics and apparent magnitude clearly indicate that they are halo members, while their optical spectra are almost identical to the recently identified cool halo white dwarf WD 0346+246. Canonical stellar halo models predict a white dwarf volume density that is 2 orders of magnitude less than the rho approximately 7x10-4 M middle dot in circle pc-3 inferred from this survey. With the caveat that the sample size is very small, it appears that a significant fraction, approximately 10%, of the local dark matter halo is in the form of very old, cool, white dwarfs.
Aims. Completing the poorly known substellar census of the solar neighbourhood, especially with respect to the coolest brown dwarfs, will lead to a better understanding of failed star formation processes and binary statistics with different environmental conditions. Methods. Using UKIDSS data and their cross-correlation with the SDSS, we searched for high proper motion mid-to late-T dwarf candidates with extremely blue near-infrared (J−K<0) and very red optical-to-near-infrared (z−J>+2.5) colours. Results. With 11 newly found T dwarf candidates, the proper motions of which range between 100 and 800 mas/yr, we increased the number of UKIDSS T dwarf discoveries by ≈30%. Large proper motions were also measured for six of eight previously known T4.5-T9 dwarfs detected in our survey. All new candidates can be classified as T5-T9 dwarfs based on their colours. Two of these objects were found to be common proper motion companions of Hipparcos stars with accurate parallaxes. The latter allow us to determine absolute magnitudes from which we classify Hip 63510C as T7 and Hip 73786B as T6.5 dwarfs with an uncertainty of ±1 spectral subtype. The projected physical separation from their low-mass (M0.5 and K5) primaries is in both cases about 1200 AU. One of the Hipparcos stars has already a known very low-mass star or brown dwarf companion on a close astrometric orbit (Hip 63510B = Gl 494B). With distances of only 11.7 and 18.6 pc, deduced from their primaries respectively for Hip 63510C and Hip 73786B, various follow-up observations can easily be carried out to study these cool brown dwarfs in more detail and to compare their properties with those of the already well-investigated primaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.