Biological processes such as transcription may generate domains of supercoiling on a circular DNA. The existence of these domains in Escherichia coli was investigated by the ability of different lengths of (CG) tracts, cloned upstream or downstream from the tetracycline resistance gene (tet) of pBR322, to adopt the Z structure in vivo. Segments as short as 12 base pairs adopt the Z form when cloned upstream from the tet gene (Eco RI site), whereas no Z DNA was detected when this sequence was cloned downstream (Sty I site), even with a 74-base pair (CG) tract that requires less supercoiling than shorter tracts for the B-Z transition. Hence the localized supercoil density in pBR322 can be as high as -0.038 and as low as -0.021 at different loci. These data demonstrate the existence of the Z structure for commonly found natural sequences and support the notion of domains of negative supercoiling in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.