Swine influenza is an acute respiratory disease caused by type A influenza viruses. Before 1998, swine influenza virus isolates in the United States were mainly of the classical H1N1 lineage. Since then, phylogenetically distinct reassortant H3N2 viruses have been identified as respiratory pathogens in pigs on U.S. farms. The H3N2 viruses presently circulating in the U.S. swine population are triple reassortants containing avian-like (PA and PB2), swine-like (M, NP, and NS), and human-like (HA, NA, and PB1) gene segments. Recent sequence data show that the triple reassortants have acquired at least three distinct H3 molecules from human influenza viruses and thus form three distinct phylogenetic clusters (I to III). In this study we analyzed the antigenic and pathogenic properties of viruses belonging to each of these clusters. Hemagglutination inhibition and neutralization assays that used hyperimmune sera obtained from caesarian-derived, colostrumdeprived pigs revealed that H3N2 cluster I and cluster III viruses share common epitopes, whereas a cluster II virus showed only limited cross-reactivity. H3N2 viruses from each of the three clusters were able to induce clinical signs of disease and associated lesions upon intratracheal inoculation into seronegative pigs. There were, however, differences in the severity of lesions between individual strains even within one antigenic cluster. A correlation between the severity of disease and pig age was observed. These data highlight the increased diversity of swine influenza viruses in the United States and would indicate that surveillance should be intensified to determine the most suitable vaccine components.
The genome and transcriptional pattern of a newly identified respiratory variant of transmissible gastroenteritis virus were analyzed and compared with those of classical enterotropic transmissible gastroenteritis virus. The transcriptional patterns of the two viruses indicated that differences occurred in RNAs 1 and 2(S) and that RNA 3 was absent in the porcine respiratory coronavirus (PRCV) variant. The smaller RNA 2(S) of PRCV was due to a 681-nucleotide (nt) deletion after base 62 of the PRCV peplomer or spike (S) gene. The PRCV S gene still retained information for the 16-amino-acid signal peptide and the first 6 amino acid residues at the N terminus of the mature S protein, but the adjacent 227 residues were deleted. Two additional deletions (3 and 5 nt) were detected in the PRCV genome downstream of the S gene. The 3-nt deletion occurred in a noncoding region; however, the 5-nt deletion shortened the potential open reading frame A polypeptide from 72 to 53 amino acid residues. Significantly, a C-to-T substitution was detected in the last base position of the transcription recognition sequence upstream of open reading frame A, which rendered RNA 3 nondetectable in PRCV-infected cell cultures.
A respiratory variant of transmissible gastroenteritis virus (TGEV), designated PRCV-Ind/89, was isolated from a swine breeding stock herd in Indiana. The virus was readily isolated from nasal swabs of pigs of different ages and induced cytopathology on primary porcine kidney cells and and on a swine testicular (ST) cell line. An 8-week-old pig infected oral/nasally with the respiratory variant and a contact pig showed no signs of respiratory or enteric disease. These pigs did not shed virus in feces but did shed the agent from the upper respiratory tract for approximately 2 weeks. Baby pigs from 2 separate litters (2 and 3 days old) also showed no clinical signs following oral/nasal inoculation with PRCV-Ind/89. In a third litter, 5 of 7 piglets (5 days old) infected either oral/nasally or by stomach tube developed a transient mild diarrhea with villous atrophy. However, virus was not isolated from rectal swabs or ileal homogenates of these piglets, and viral antigen was not detected in the ileum by fluorescent antibody staining even though the virus was easily recovered from nasal swabs and lung tissue homogenates. Swine antisera produced against PRCV-Ind/89 or enteric TGEV cross-neutralized either virus. In addition, an anti-peplomer monoclonal antibody, 4F6, that neutralizes TGEV also neutralized the PRCV-Ind/89 isolate. Radioimmunoassays with a panel of monoclonal antibodies indicated that the Indiana respiratory variant and the European PRCV are antigenically similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.