Cardiac fibroblasts play a central role in the maintenance of extracellular matrix in the normal heart and as mediators of inflammatory and fibrotic myocardial remodeling in the injured and failing heart. In this review, we evaluate the cardiac fibroblast as a therapeutic target in heart disease. Unique features of cardiac fibroblast cell biology are discussed in relation to normal and pathophysiological cardiac function. The contribution of cardiac fibrosis as an independent risk factor in the outcome of heart failure is considered. Candidate drug therapies that derive benefit from actions on cardiac fibroblasts are summarized, including inhibitors of angiotensin-aldosterone systems, endothelin receptor antagonists, statins, anticytokine therapies, matrix metalloproteinase inhibitors, and novel antifibrotic/anti-inflammatory agents. These findings point the way to future challenges in cardiac fibroblast biology and pharmacotherapy.
A number of DNA viruses carry apoptosis-inhibiting genes which enable the virus to escape from the host response. The adenovirus E1B 19K protein can inhibit apoptosis induced by E1A, tumour-necrosis factor-alpha, FAS antigen and nerve growth factor deprivation. The molecular basis of this inhibition remains poorly understood, but the fact that protection is seen in the absence of other viral proteins suggests that E1B 19K targets cellular proteins. We report here the identification of three cellular proteins that bind E1B 19K. One of these is a new member of the bcl-2 family, which we have called bak (for bcl-2 homologous antagonist/killer). This protein, which is expressed in a wide variety of cell types, binds to E1B 19K and to the Bcl-2 homologue Bcl-XL (ref. 17) in yeast. In addition, overexpression of bak in sympathetic neurons deprived of nerve growth factor accelerates apoptosis and blocks the protective effect of co-injected E1B 19K.
The cell-killing effects of the cytokines TNF-alpha and FasL are mediated by the distinct cell-surface receptors TNFR1, TNFR2 and Fas (also known as CD95/APO-1), which are all members of a receptor superfamily that is important for regulating cell survival. The cytoplasmic regions of TNFR1 and Fas contain a conserved 'death' domain which is an essential component of the signal pathway that triggers apoptosis and activation of the transcription factor NF-kappaB (refs 5,6). Here we report the isolation of a 54K receptor that is a new member of the TNFR superfamily, using the death domain of TNFR1 in a yeast two-hybrid system. This protein, WSL-1, is most similar to TNFR1 itself, particularly in the death-domain region. The gene wsl-1 is capable of inducing apoptosis when transfected into 3T3 and 293 cells, and can also activate NF-kappaB in 293 cells. Like TNFR1, WSL-1 will homodimerize in yeast. WSL-1 also interacts specifically with the TNFR1-associated molecule TRADD. The tissue distribution is very restricted and significantly different from that of Fas and TNFR1.
Pulmonary arterial hypertension (PAH) is an obstructive disease of the precapillary pulmonary arteries. Schistosomiasis-associated PAH shares altered vascular TGF-β signalling with idiopathic, heritable and autoimmune-associated etiologies; moreover, TGF-β blockade can prevent experimental pulmonary hypertension (PH) in pre-clinical models. TGF-β is regulated at the level of activation, but how TGF-β is activated in this disease is unknown. Here we show TGF-β activation by thrombospondin-1 (TSP-1) is both required and sufficient for the development of PH in Schistosoma-exposed mice. Following Schistosoma exposure, TSP-1 levels in the lung increase, via recruitment of circulating monocytes, while TSP-1 inhibition or knockout bone marrow prevents TGF-β activation and protects against PH development. TSP-1 blockade also prevents the PH in a second model, chronic hypoxia. Lastly, the plasma concentration of TSP-1 is significantly increased in subjects with scleroderma following PAH development. Targeting TSP-1-dependent activation of TGF-β could thus be a therapeutic approach in TGF-β-dependent vascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.