Abstract:This study aims to determine the optimal approach for evaluating thermal comfort in an office that uses natural ventilation as the main conditioning strategy; the office is located in Quito-Ecuador. The performance of the adaptive model included in CEN Standard EN15251 and the traditional PMV model are compared with reports of thermal environment satisfaction surveys presented simultaneously to all occupants of the office to determine which of the two comfort models is most suitable to evaluate the thermal environment. The results indicate that office occupants have developed some degree of adaptation to the climatic conditions of the city where the office is located (which only demands heating operation), and tend to accept and even prefer lower operative temperatures than those considered optimum by applying the PMV model. This is an indication that occupants of naturally conditioned buildings are usually able to match their comfort temperature to their normal environment. Therefore, the application of the adaptive model included in CEN Standard EN15251 seems like the optimal approach for evaluating thermal comfort in naturally conditioned buildings, because it takes into consideration the adaptive principle that indicates that if a change occurs such as to produce discomfort, people tend to react in ways which restore their comfort.
Natural ventilation has been studied as an effective strategy in order to reduce energy consumption without compromising occupant’s hygrothermal comfort in warm-humid climates. However, the main concern about the current state of art in the use of Building Energy Simulation (BES) as an approach to natural ventilation is the definition of input data which usually do not represent the real state of the buildings in the studied region. Within this context, the main contribution of this research is to propose a methodology through which the real state of buildings can be evaluated. By this analysis, valid input parameters was found to exploit the capabilities of BES and CFD simulations to fulfill the main objective of this study, which is to assess the impact of natural ventilation strategies in the energy consumption of HVAC systems and occupants hygrothermal comfort. Four natural ventilation strategies were evaluated: single sided ventilation, cross ventilation, solar chimney and double façade. The results show that the exclusive use of natural ventilation is ineffective to ensure hygrothermal comfort in a building with high thermal loads in a warm-humid climate like Guayaquil. However, by using a hybrid system (natural ventilation/dehumidification and cooling) cooling energy consumption can be reduced in up to 10.6% without compromising occupant’s hygrothermal comfort. Due to the promising results regarding energy savings, further research will aim to evaluate the impact of other passive strategies in energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.