Intramolecular Förster-type excitation energy transfer (FRET) processes in a series of first-generation polyphenylene dendrimers substituted with spatially well-separated peryleneimide chromophores and a terryleneimide energy-trapping chromophore at the rim were investigated by steady-state and time-resolved fluorescence spectroscopy. Energy-hopping processes among the peryleneimide chromophores are revealed by anisotropy decay times of 50-80 ps consistent with a FRET rate constant of k hopp ) 4.6 ns -1 . If a terryleneimide chromophore is present at the rim of the dendrimer together with three peryleneimide chromophores, more than 95% of the energy harvested by the peryleneimide chromophores is transferred and trapped in the terryleneimide. The two decay times (τ 1 ) 52 ps and τ 2 ) 175 ps) found for the peryleneimide emission band are recovered as rise times at the terryleneimide emission band proving that the energy trapping of peryleneimide excitation energy by the terryleneimide acceptor occurs via two different, efficient pathways. Molecular-modeling-based structures tentatively indicate that the rotation of the terryleneimide acceptor group can lead to a much smaller distance to a single donor chromophore, which could explain the occurrence of two energy-trapping rate constants. All energy-transfer processes are quantitatively describable with Förster energy transfer theory, and the influence of the dipole orientation factor in the Förster equation is discussed.
Intramolecular kinetic processes in a series of second-generation polyphenyl dendrimers with multiple peryleneimide chromophores attached to the para position of the outer phenyl ring were investigated by steadystate and femtosecond to nanosecond time-resolved fluorescence spectroscopy. The results obtained were compared to the ones of the corresponding first-generation dendrimer series. The energy-hopping rate constant, k hopp , observed from anisotropy decay times was found to be 5 times smaller than that of the first-generation series and scales well with the difference in average distance between the chromophores. In addition to the processes observed in first-generation dendrimers in the ultrafast time domain by fluorescence up-conversion, a second annihilation process is found in the second-generation multichromophoric dendrimer. The observation of two singlet-singlet annihilation processes in this compound can be explained by the presence of a mixture of constitutional isomers leading to a broader distribution of distances between neighboring chromophores compared to first-generation multichromophoric dendrimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.