Increasing fishing pressure on sharks stocks over recent decades has resulted in declines of many populations and led to increasing concerns for their conservation. The extent of these declines, however, has been highly variable—the result of the level of fishing, ocean conditions, and the life history of individual species. Two recent articles have described the collapse and possible extirpation of shark populations in the northwest Atlantic Ocean and Gulf of Mexico. Herein, we examine the results of these two papers commenting on the data sets used, comparing them to other available data sets, and critically evaluating the analyses and conclusions. We argue that these conclusions have been overstated because: (1) the analyses were based on a limited number of data sets, (2) the data sets themselves are inadequate to describe the status of all shark populations in the northwest Atlantic Ocean and Gulf of Mexico reported in these studies, (3) available data sets that could produce different conclusions were not utilized, (4) some factors were not taken into account that could have biased the results, (5) there were no alternate hypotheses presented evaluating other causes of the perceived decline, and (6) the authors did not consider any current stock assessments, which in several cases report the status of sharks to be considerably healthier than asserted.
When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.
The Cownose Ray Rhinoptera bonasus is an opportunistic predator of benthic invertebrates and has had a long history of negative interactions with commercial shellfish industries. Most recently, Cownose Rays have been implicated in negatively affecting the recovery of bay scallop Argopecten irradians stocks in North Carolina and oyster restoration and commercial aquaculture efforts in Chesapeake Bay. A mitigation attempt to decrease predation on shellfish has resulted in an unregulated fishery for Cownose Rays. Cownose Ray life history suggests that they are highly susceptible to overexploitation. We determined age, growth, and size at maturity for Cownose Rays collected in Chesapeake Bay. In total, 694 rays were used for the study: 246 males ranging in size from 30.0 to 98.0 cm disc width (DW) and 448 females ranging from 30.0 to 110.5 cm DW. The oldest individual observed was a female (107 cm DW) estimated at age 21. Our data suggested that Cownose Rays grow considerably faster during the first few years than has been previously reported, thus producing higher estimates of the growth coefficient k. The best‐fit growth models (three‐parameter von Bertalanffy models) estimated k‐values of 0.2741 for males and 0.1931 for females. The large sample size and inclusion of many older animals (n = 119 rays over age 10) resulted in theoretical maximum size estimates that matched the observed sizes well. The median size at 50% maturity was 85–86 cm DW for males and females (corresponding to ages of ∼6–7 for males and ∼7–8 for females). Fecundity in Cownose Rays was typically one embryo per mature female, with a gestation period of 11–12 months. Our study confirms that the Cownose Ray is a K‐selected species with late maturity, long gestation, and low reproductive potential, indicating that it could be highly susceptible to overexploitation. Received February 28, 2013; accepted June 3, 2013
Chondrichthyans (sharks, batoids, and chimaeras) have simple feeding mechanisms owing to their relatively few cranial skeletal elements. However, the indirect association of the jaws to the cranium (euhyostylic jaw suspension) has resulted in myriad cranial muscle rearrangements of both the hyoid and mandibular elements. We examined the cranial musculature of an abbreviated phylogenetic representation of batoid fishes, including skates, guitarfishes and with a particular focus on stingrays. We identified homologous muscle groups across these taxa and describe changes in gross morphology across developmental and functional muscle groups, with the goal of exploring how decoupling of the jaws from the skull has effected muscular arrangement. In particular, we focus on the cranial anatomy of durophagous and nondurophagous batoids, as the former display marked differences in morphology compared to the latter. Durophagous stingrays are characterized by hypertrophied jaw adductors, reliance on pennate versus fusiform muscle fiber architecture, tendinous rather than aponeurotic muscle insertions, and an overall reduction in mandibular kinesis. Nondurophagous stingrays have muscles that rely on aponeurotic insertions onto the skeletal structure, and display musculoskeletal specialization for jaw protrusion and independent lower jaw kinesis, relative to durophagous stingrays. We find that among extant chondrichthyans, considerable variation exists in the hyoid and mandibular muscles, slightly less so in hypaxial muscles, whereas branchial muscles are overwhelmingly conserved. As chondrichthyans occupy a position sister to all other living gnathostomes, our understanding of the structure and function of early vertebrate feeding systems rests heavily on understanding chondrichthyan cranial anatomy. Our findings highlight the incredible variation in muscular complexity across chondrichthyans in general and batoids in particular.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.