Plasmodium falciparum parasites are responsible for the major global disease malaria, which results in >2 million deaths each year. With the rise of drug-resistant malarial parasites, novel drug targets and lead compounds are urgently required for the development of new therapeutic strategies. Here, we address this important problem by targeting the malarial neutral aminopeptidases that are involved in the terminal stages of hemoglobin digestion and essential for the provision of amino acids used for parasite growth and development within the erythrocyte. We characterize the structure and substrate specificity of one such aminopeptidase, PfA-M1, a validated drug target. The X-ray crystal structure of PfA-M1 alone and in complex with the generic inhibitor, bestatin, and a phosphinate dipeptide analogue with potent in vitro and in vivo antimalarial activity, hPheP[CH 2]Phe, reveals features within the protease active site that are critical to its function as an aminopeptidase and can be exploited for drug development. These results set the groundwork for the development of antimalarial therapeutics that target the neutral aminopeptidases of the parasite. drug design ͉ malaria ͉ structural biology ͉ protease T here are 300-500 million cases of clinical malaria annually, and 1.4-2.6 million deaths. Malaria is caused by apicomplexan parasites of the genus Plasmodium, with Plasmodium falciparum the most lethal of the 4 species that infect humans. Clinical manifestations begin when parasites enter erythrocytes, and most antimalaria drugs, such as chloroquine, exert their action by preventing the parasite development within these cells (1). As a result of the rapid spread of drug-resistant parasites, there is a constant need to identify and validate new antimalarial targets.Intraerythrocytic parasites have limited capacity for de novo amino acid synthesis and rely on degradation of host hemoglobin (Hb) to maintain protein metabolism and synthesis, and an osmotically stable environment within the erythrocyte (1-4). Within the erythrocytes, malaria parasites consume as much as 75% of the cellular Hb (1). Hb is initially degraded by the concerted action of cysteine-, aspartyl-, and metalloendoproteases, and a dipeptidase (cathepsin C) within a digestive vacuole (DV) to di-and tripeptide fragments (5, 6). These fragments are suggested to be exported to the parasite cytoplasm, where further hydrolysis to release free amino acids takes place [supporting information (SI) Fig. S1; see refs. 7 and 8].The release of amino acids involves 2 metallo-exopeptidases: an alanyl aminopeptidase, PfA-M1 (9, 10), and a leucine aminopeptidase, PfA-M17 (7,11,12). We have demonstrated that the aminopeptidase inhibitor bestatin, an antibiotic and natural analogue of the dipeptide Phe-Leu derived from the fungus Streptomyces olivoretticul, prevents P. falciparum malaria growth in culture (13,14). More recently, it was shown not only that synthetic phosphinate dipeptide analogues that inhibit metallo-aminopeptidases prevented the growth of wildty...