Duplication anomalies of the urinary collecting system are common and can be discovered and characterized with multiple imaging modalities. The embryology, imaging manifestations and clinical ramifications of duplicated ureters and renal collecting systems vary from a normal anatomical variant to urological pathology and are discussed and illustrated in this review.
Objective: We tested the hypothesis that chronic fetal hypoxia, at a severity present in many types of congenital heart disease, would lead to abnormal neurodevelopment. Methods: Eight mid-gestation fetal sheep were cannulated onto a pumpless extracorporeal oxygenator via the umbilical vessels and supported in a fluid-filled environment for 22 ± 2 days under normoxic or hypoxic conditions. Total parenteral nutrition was provided. Control fetuses (n = 7) were harvested at gestational age 133 ± 4 days. At necropsy, brains were fixed for histopathology. Neurons were quantified in white matter tracts, and the thickness of the external granular layer of the cerebellum was measured to assess neuronal migration. Capillary density and myelination were quantified in white matter. Data were analyzed with unpaired Student t tests or 1-way analysis of variance, as appropriate. Results: Oxygen delivery was reduced in hypoxic fetuses (15.6 ± 1.8 mL/kg/min vs 24.3 ± 2.3 mL/kg/min, P <.01), but umbilical blood flow and caloric delivery were not different between the 2 groups. Compared with normoxic and control animals, hypoxic fetuses had reduced neuronal density and increased external granular layer thickness. Compared with normoxic and control animals, hypoxic fetuses had increased capillary density in white matter. Cortical myelin integrity score was lower in the hypoxic group compared with normoxic and control animals. There was a significant negative correlation between myelin integrity and capillary density. Conclusions: Chronic fetal hypoxia leads to white matter hyper-vascularity, decreased neuronal density, and impaired myelination, similar to the neuropathologic findings observed in children with congenital heart disease. These findings support the hypothesis that fetal hypoxia, even in the setting of normal caloric delivery, impairs neurodevelopment.
Purpose To determine the frequency and appearance of radiation-induced liver disease on PET/CT in patients undergoing serial imaging during neoadjuvant chemoradiation of distal esophageal cancer. Materials and Methods In this IRB-approved, HIPAA–compliant retrospective analysis, we identified 112 patients with distal esophageal cancer treated by neoadjuvant chemoradiation who had serial PET/CT imaging available for review. Two readers reviewed all studies in consensus and recorded those cases where new foci of visually detectable increased FDG avidity appeared in the liver during therapy. The etiology of such foci was determined from corresponding findings at CT or MRI, by hepatic biopsy during surgery, by characteristic evolution on post-operative imaging, or by a combination of these methods. Results New foci of FDG avidity developed in the liver during neoadjuvant therapy in 10 of 112 (9%) patients, of whom 9 (8%) were determined to have radiation-induced liver disease based on further imaging and/or biopsy and one of whom had developed interval metastatic disease based on biopsy. In the cases of radiation-induced liver disease, the abnormal foci were found only in the caudate and left hepatic lobes, near the primary tumor, while the patient who developed interval metastatic disease had involvement of the inferior right hepatic lobe, remote from the radiation therapy field. Conclusion New foci of increased FDG avidity are commonly seen in the caudate and left hepatic lobes of the liver during neoadjuvant chemoradiation of distal esophageal cancer, and these findings generally reflect radiation-induced liver disease rather than metastatic disease.
CONTRIBUTION What are the novel findings of this work?In fetuses with open spinal dysraphism, the presence of a myelomeningocele sac and larger sac size are associated with fetal talipes. What are the clinical implications of this work?The findings of this study suggest that the risk of talipes is increased in fetuses with open spinal dysraphism with a myelomeningocele sac, and that the risk is correlated with sac size. These results also have implications for in-utero treatment of myelomeningocele as they suggest that the fetal spinal cord and nerves are uniquely sensitive to stretch injury. ABSTRACT Objective To determine whether the presence of a myelomeningocele (MMC) sac and sac size correlate with compromised lower-extremity function in fetuses with open spinal dysraphism.Methods A radiology database search was performed to identify cases of MMC and myeloschisis (MS) diagnosed prenatally in a single center from 2013 to 2017. All cases were evaluated between 18 and 25 weeks. Ultrasound reports were reviewed for talipes and impaired lower-extremity motion. In MMC cases, sac volume was calculated from ultrasound measurements. Magnetic resonance imaging reports were reviewed for hindbrain herniation. The association of presence of a MMC sac Correspondence to: Dr E. R. Oliver,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.