1,3-Diaminopropane (DAP) was used as a structure-directing agent for the hydrothermal synthesis of an organically templated iron phosphate. During crystallization at 180 ?C, iron phosphate (FePO-DAP) with a layered structure was formed after one day. Longer crystallization yielded a mixture of FePO-DAP and leucophosphite, raising the question whether a transformation of FePO-DAP to leucophosphite occurs, or whether DAP decomposes under hydrothermal conditions resulting in leucophosphite formation. Lattice energy and free energy calculations strongly support the supposition that a decomposition of DAP occurs prior to the formation of leucophosphite.
A novel layered zincophosphate (ZnPO?MPA) was prepared by hydrothermal crystallization using 3-methylaminopropylamine (MPA) as a structure-directing agent. The structure consists of macroanion [Zn2P3O8(OH)3]2- layers which are built up of 4-membered ring channels. The channels (of about 3.7 ? diameter) arise through the connection of the neighbouring rings by two oxygen bridges. The negative charge of the layers is compensated by diprotonated MPA molecules which are stacked parallel to the ring channels. ZnPO?MPA is stable up to 300 ?C. At higher temperatures MPA decomposition begins followed by a dehydration, which occurs through condensation of the framework hydroxyl groups. The activation energy of the MPA decomposition is high due to the fact that the layers and MPA cations are held together by strong hydrogen bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.