We study the evolution of embedded star clusters as possible progenitors to reproduce 30 Doradus, specifically the compact star cluster known as R136 and its surrounding stellar family, which is believed to be part of an earlier star formation event. We employ the high-precision stellar dynamics code N 6++GPU to calculate the dynamics of the stars embedded in different evolving molecular clouds modelled by the 1D cloud/clusters evolution code . We explore clouds with initial masses of 𝑀 cloud = 3.16 × 10 5 M that (re)-collapse allowing for the birth of a second generation of stars. We explore different star formation efficiencies in order to find the best set of parameters that can reproduce the observation measurements. Our best-fit models correspond to a first stellar generation with masses between 1.26 × 10 4 -2.85 × 10 4 M and for the second generation we find a 𝑀 ≈ 6.32 × 10 4 M . Our models can match the observed stellar ages, cloud shell radius, and the fact that the second generation of stars is more concentrated than the first one. This is found independently of the cluster starting initially with mass segregation or not. By comparing our results with recent observational measurements of the mass segregation and density profile of the central zone we find close agreement, and thus provide supporting evidence for a centrally focused (re)-collapse origin to the multiple ages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.