Mycobacteriosis, a chronic bacterial infection, has been associated with severe losses in some zebrafish facilities and low-level mortalities and unknown impacts in others. The occurrence of at least six different described species (Mycobacterium abscessus, M. chelonae, M. fortuitum, M. haemophilum, M. marinum, M. peregrinum) from zebrafish complicates diagnosis and control because each species is unique. As a generalization, mycobacteria are often considered opportunists, but M. haemophilum and M. marinum appear to be more virulent. Background genetics of zebrafish and environmental conditions influence the susceptibility of fish and progression of disease, emphasizing the importance of regular monitoring and good husbandry practices. A combined approach to diagnostics is ultimately the most informative, with histology as a first-level screen, polymerase chain reaction for rapid detection and species identification, and culture for strain differentiation. Occurrence of identical strains of Mycobacterium in both fish and biofilms in zebrafish systems suggests transmission can occur when fish feed on infected tissues or tank detritus containing mycobacteria. Within a facility, good husbandry practices and sentinel programs are essential for minimizing the impacts of mycobacteria. In addition, quarantine and screening of animals coming into a facility is important for eliminating the introduction of the more severe pathogens. Elimination of mycobacteria from an aquatic system is likely not feasible because these species readily establish biofilms on surfaces even in extremely low nutrient conditions. Risks associated with each commonly encountered species need to be identified and informed management plans developed. Basic research on the growth characteristics, disinfection, and pathogenesis of zebrafish mycobacteria is critical moving forward.
We report the first cases of Edwardsiella ictaluri causing epizootics in laboratory populations of Zebrafish Danio rerio. Edwardsiella ictaluri is primarily recognized as a disease of catfish species and is known to cause an economically important bacterial disease of farm-raised catfish in the USA and abroad; however, it has been isolated on occasion from 10 other genera of nonictalurid fishes. We isolated E. ictaluri from moribund Zebrafish held in quarantine at two different universities in two states and from a research facility in a third state between February 23 and December 6, 2011. Edwardsiellosis in Zebrafish can be described as a severe systemic disease characterized by tissue necrosis and the presence of large numbers of extracellular and intracellular bacteria, often within macrophages. The kidneys (pronephros and mesonephros), spleen, nares, and forebrain were the most commonly and severely affected tissues. In outbreaks, mortality was acute and numerous fish died over a 1–2 week period. Mortality continued until the majority of the population was lost, at which time the remaining fish were euthanized. In addition to these cases, four cultures of bacteria isolated from Zebrafish by another diagnostic laboratory were submitted to the Louisiana Aquatic Diagnostic Laboratory for identification and were confirmed as E. ictaluri. In total, eight cultures of E. ictaluri from Zebrafish from Louisiana, Massachusetts, Pennsylvania, and Florida were identified. The isolates were confirmed as E. ictaluri by biochemical phenotype, API 20E (bioMérieux), and amplification and sequencing of a portion of the 16S rRNA gene. Edwardsiella ictaluri isolates from Zebrafish are believed to comprise a unique group and were differentiated from catfish isolates by exhibiting weaker motility, autoaggregation in broth, a different plasmid profile (two plasmids of 4.0 and 3.5 kb), a different API 20E code (4204000), and lack of lipopolysaccharide recognition with Mab Ed9.
Despite the prevalence of gamma delta T cells in mucosae that are typically colonized by Candida albicans, little is known of the possible role of these cells in resistance to candidiasis. A sharp increase in the number of gamma delta T cells and macrophages following intraperitoneal inoculation of mice with C. albicans led us to examine the role of these cells in the immune response to C. albicans. We show that the gamma delta T cells enhance macrophage nitric oxide (NO) production and anti-candida activity, in vitro. We also propose that the gamma delta T cells regulate macrophage function during candidiasis in vivo as well, because depletion of these cells abrogated inducible NO synthase expression in mucosae and enhanced murine susceptibility to candidiasis.
BackgroundVaginal epithelial cells have receptors, signal transduction mechanisms, and cytokine secretion capabilities to recruit host defenses against Candida albicans infections. This research evaluates how probiotic lactobacilli affect the defensive epithelial response.MethodsThis study used quantitative reverse transcription-polymerase chain reaction assay (qRT-PCR), flow cytometry, and a multiplex immunoassay to observe changes in the regulation of gene expression related to cytokine responses in the VK2 (E6/E7) vaginal epithelial cell line treated with 17β-estradiol, exposed to probiotic Lactobacillus rhamnosus GR-1® and Lactobacillus reuteri RC-14® and challenged with C. albicans. Data were statistically evaluated by repeated measures analysis of variance and paired t-tests where appropriate.ResultsC. albicans induced mRNA expression of genes related to inflammatory cytokine responses associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signal transduction pathways. 17β-estradiol suppressed expression of interleukin-1α (IL-1α), IL-6, IL-8, and tumor necrosis factor alpha (TNFα) mRNA. Probiotic lactobacilli suppressed C. albicans-induced nuclear factor-kappa B inhibitor kinase kinase alpha (Iκκα), Toll-like receptor-2 (TLR2), TLR6, IL-8, and TNFα, also suggesting inhibition of NF-κB signaling. The lactobacilli induced expression of IL-1α, and IL-1β mRNA, which was not inhibited by curcumin, suggesting that they induce an alternate inflammatory signal transduction pathway to NF-κB, such as the mitogen activated protein kinase and activator protein-1 (MAPK/AP-1) signal transduction pathway. Curcumin inhibited IL-13 secretion, suggesting that expression of this cytokine is mainly regulated by NF-κB signaling in VK2 cells.ConclusionsThe results suggest that C. albicans infection induces pro-inflammatory responses in vaginal epithelial cells, and estrogen and lactobacilli suppress expression of NF-κB-related inflammatory genes. Probiotic lactobacilli may induce IL-1α and IL-1β expression by an alternate signal transduction pathway, such as MAPK/AP-1. Activation of alternate signaling mechanisms by lactobacilli to modify epithelial cell cytokine production may be a mechanism for probiotic modulation of morbidity in vulvovaginal candidiasis.
Four species of probiotic bacteria were assessed for their capacities to protect athymic bg/bg-nu/nu and euthymic bg/bg-nu/؉ mice from mucosal and systemic candidiasis. Each bacterial species and Candida albicans colonized the gastrointestinal tracts of both strains of mice. The presence of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus casei GG, or Bifidobacterium animalis) in the gastrointestinal tracts prolonged the survival of adult and neonatal bg/bg-nu/nu mice compared to that of isogenic mice colonized with C. albicans alone. The incidence of systemic candidiasis in bg/bg-nu/nu mice was significantly reduced by each of the four probiotic bacterial species. The numbers of C. albicans present in the alimentary tracts of euthymic bg/bg-nu/؉ mice were significantly reduced by L. casei GG and B. animalis. None of the probiotic bacteria species completely prevented mucosal candidiasis, but B. animalis reduced its incidence and severity. Probiotic bacteria also modulated antibody-and cell-mediated immune responses to C. albicans. The prolonged survival of mice, decreased severity of mucosal and systemic candidiasis, modulation of immune responses, decreased number of C. albicans in the alimentary tract, and reduced numbers of orogastric infections demonstrated not only that probiotic bacteria have biotherapeutic potential for prophylaxis against and therapy of this fungal disease but also that probiotic bacteria protect mice from candidiasis by a variety of immunologic (thymic and extrathymic) and nonimmunologic mechanisms in this model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.