Metoprolol is a selective β-1 adrenergic receptor blocker that undergoes extensive metabolism by the polymorphic enzyme, CYP2D6. Our objective was to investigate the influence of CYP2D6 polymorphisms on efficacy and tolerability of metoprolol tartrate. 281 study participants with uncomplicated hypertension received 50 mg of metoprolol twice daily followed by response guided titration to 100 mg twice daily. Phenotypes were assigned based on results of CYP2D6 genotyping and copy number variation assays. Clinical response to metoprolol and adverse effect rates were analyzed in relation to CYP2D6 phenotypes by using appropriate statistical tests. Heart rate response differed significantly by CYP2D6 phenotype (p-value <0.0001) with poor metabolizers & intermediate metabolizers showing greater HR reduction. However, blood pressure response and adverse effect rates were not significantly different by CYP2D6 phenotype. Other than a significant difference in heart rate response, CYP2D6 polymorphisms were not a determinant of the variability in response or tolerability to metoprolol.
Articles you may be interested inEffect of proton irradiation on thermal resistance and breakdown voltage of InAlN/GaN high electron mobility transistors J.
InGaN multi-quantum-well light-emitting diodes (LEDs) in the form of unpackaged die with emission wavelengths from 410 to 525nm were irradiated with 40MeV protons to doses of 5×109–5×1010cm−2. The highest dose is equivalent to more than 100 years in low-earth orbit. The projected range of these protons is >50μm in GaN and thus they traverse the entire active region. The electroluminescent intensity from the LEDs decreased by only 15%–25% even for the highest doses and the reverse breakdown voltage increased by 1–2V from their control values of ∼21–29V. The percentage change in breakdown voltage and electroluminescence intensity was independent of the initial emission wavelength over the range investigated, within experimental error. The GaN LEDs exhibit extremely good stability to these high-energy proton irradiations with no measurable change in contact resistance or contact morphology.
In this contribution, the radiation tolerance of single ZnO nanowire field-effect transistors (NW-FETs) fabricated with a self-assembled superlattice (SAS) gate insulator is investigated and compared with that of ZnO NW-FETs fabricated with a 60nm SiO2 gate insulator. A total-radiation dose study was performed using 10MeV protons at doses of 5.71 and 285krad(Si). The threshold voltage (Vth) of the SAS-based ZnO NW-FETs is not shifted significantly following irradiation at these doses. In contrast, Vth parameters of the SiO2-based ZnO NW-FETs display average shifts of ∼−4.0 and ∼−10.9V for 5.71 and 285krad(Si) H+ irradiation, respectively. In addition, little change is observed in the subthreshold characteristics (off current, subthreshold slope) of the SAS-based ZnO NW-FETs following H+ irradiation. These results strongly argue that the bulk oxide trap density and interface trap density formed within the SAS and/or at the SAS-ZnO NW interface during H+ irradiation are significantly lower than those for the corresponding SiO2 gate dielectrics. The radiation-robust SAS-based ZnO NW-FETs are thus promising candidates for future space-based applications in electronics and flexible displays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.